998 resultados para DIFFUSION GEOMETRY
Resumo:
Part of the optical clearing study in biological tissues concerns the determination of the diffusion characteristics of water and optical clearing agents in the subject tissue. Such information is sufficient to characterize the time dependence of the optical clearing mechanisms—tissue dehydration and refractive index (RI) matching. We have used a simple method based on collimated optical transmittance measurements made from muscle samples under treatment with aqueous solutions containing different concentrations of ethylene glycol (EG), to determine the diffusion time values of water and EG in skeletal muscle. By representing the estimated mean diffusion time values from each treatment as a function of agent concentration in solution, we could identify the real diffusion times for water and agent. These values allowed for the calculation of the correspondent diffusion coefficients for those fluids. With these results, we have demonstrated that the dehydration mechanism is the one that dominates optical clearing in the first minute of treatment, while the RI matching takes over the optical clearing operations after that and remains for a longer time of treatment up to about 10 min, as we could see for EG and thin tissue samples of 0.5 mm.
Resumo:
The study of agent diffusion in biological tissues is very important to understand and characterize the optical clearing effects and mechanisms involved: tissue dehydration and refractive index matching. From measurements made to study the optical clearing, it is obvious that light scattering is reduced and that the optical properties of the tissue are controlled in the process. On the other hand, optical measurements do not allow direct determination of the diffusion properties of the agent in the tissue and some calculations are necessary to estimate those properties. This fact is imposed by the occurrence of two fluxes at optical clearing: water typically directed out of and agent directed into the tissue. When the water content in the immersion solution is approximately the same as the free water content of the tissue, a balance is established for water and the agent flux dominates. To prove this concept experimentally, we have measured the collimated transmittance of skeletal muscle samples under treatment with aqueous solutions containing different concentrations of glucose. After estimating the mean diffusion time values for each of the treatments we have represented those values as a function of glucose concentration in solution. Such a representation presents a maximum diffusion time for a water content in solution equal to the tissue free water content. Such a maximum represents the real diffusion time of glucose in the muscle and with this value we could calculate the corresponding diffusion coefficient.
Resumo:
Tese apresentada como requisito parcial para obtenção do grau de Doutor em Gestão de Informação
Resumo:
PURPOSE: To report the diffusion-weighted MRI findings in alveolar echinococcosis (AE) of the liver and evaluate the potential role of apparent diffusion coefficients (ADCs) in the characterisation of lesions. MATERIALS AND METHODS: We retrospectively included 22 patients with 63 AE liver lesions (≥1cm), examined with 3-T liver MRI, including a free-breathing diffusion-weighted single-shot echo-planar imaging sequence (b-values=50, 300 and 600s/mm(2)). Two radiologists jointly assessed the following lesion features: size, location, presence of cystic and/or solid components (according to Kodama's classification system), relative contrast enhancement, and calcifications (on CT). The ADCtotal, ADCmin and ADCmax were measured in each lesion and the surrounding liver parenchyma. RESULTS: Three type 1, 19 type 2, 17 type 3, three type 4 and 21 type 5 lesions were identified. The mean (±SD) ADCtotal, ADCmin and ADCmax for all lesions were 1.73±0.50, 0.76±0.38 and 2.63±0.76×10(-3)mm(2)/s, respectively. The mean ADCtotal for type 1, type 2, type 3, type 4 and type 5 lesions were 1.97±1.01, 1.76±0.53, 1.73±0.41, 1.15±0.42 and 1.76±0.44×10(-3)mm(2)/s, respectively. No significant differences were found between the five lesion types, except for type 4 (p=0.0363). There was a significant correlation between the presence of a solid component and low ADCmin (r=0.39, p=0.0016), whereas an inverse correlation was found between the relative contrast enhancement and ADCtotal (r=-0.34, p=0.0072). CONCLUSION: The ADCs of AE lesions are relatively low compared to other cystic liver lesions, which may help in the differential diagnosis. Although ADCs are of little use to distinguish between the five lesion types, their low value reflects the underlying solid component.
Resumo:
ABSTRACT: q-Space-based techniques such as diffusion spectrum imaging, q-ball imaging, and their variations have been used extensively in research for their desired capability to delineate complex neuronal architectures such as multiple fiber crossings in each of the image voxels. The purpose of this article was to provide an introduction to the q-space formalism and the principles of basic q-space techniques together with the discussion on the advantages as well as challenges in translating these techniques into the clinical environment. A review of the currently used q-space-based protocols in clinical research is also provided.
Resumo:
The paper is motivated by the valuation problem of guaranteed minimum death benefits in various equity-linked products. At the time of death, a benefit payment is due. It may depend not only on the price of a stock or stock fund at that time, but also on prior prices. The problem is to calculate the expected discounted value of the benefit payment. Because the distribution of the time of death can be approximated by a combination of exponential distributions, it suffices to solve the problem for an exponentially distributed time of death. The stock price process is assumed to be the exponential of a Brownian motion plus an independent compound Poisson process whose upward and downward jumps are modeled by combinations (or mixtures) of exponential distributions. Results for exponential stopping of a Lévy process are used to derive a series of closed-form formulas for call, put, lookback, and barrier options, dynamic fund protection, and dynamic withdrawal benefit with guarantee. We also discuss how barrier options can be used to model lapses and surrenders.
Resumo:
Traduction de Wylie, rédigée par Li Shan lan ; préfaces Chinoises des deux traducteurs (1859) ; préface anglaise, écrite à Shang hai par A. Wylie (juillet 1859). Liste de termes techniques en anglais et en Chinois. Gravé à la maison Mo hai (1859).18 livres.