998 resultados para Coreia (Sul) - Politica Comercial
Resumo:
Este trabalho estuda e compara os fatores determinantes do endividamento em empresas do sector das manufacturas de 7 países do Sul da Europa e da Escandinávia para o ano 2008. Os resultados encontrados sugerem que não existem diferenças significativas entre esses países, não obstante os níveis de endividamento médio entre as empresas dos vários países apresentarem diferenças significativas. No estudo utilizou-se o modelo de regressão fraccionário para estimar o modelo, dadas as fragilidades que as outras formas funcionais apresentam em situações em que a variável dependente representa uma proporção. Rendibilidade (-); Crescimento (+); e Liquidez (-) evidenciam a superioridade da teoria de pecking order em relação à teoria do trade-off e custos de agência. Outras fontes de protecção fiscal (-), tangibilidade (+) e idade (-) são também factores importantes para a explicação do endividamento das empresas analisadas.
Resumo:
Systematics, phylogeny and geographical distribution of the South American species of Centris (Paracentris) Cameron, 1903, and Centris (Penthemisia) Moure, 1950, including a phylogenetic analysis of the "Centris group" sensu Ayala, 1998 (Hymenoptera, Apoidea, Centridini). A cladistic analysis with the objective of testing the hypothesis of monophily of Centris (Paracentris) Cameron, 1903, and of studying its phylogenetic relationships with the other subgenera that belong to the Centris group, sensu Ayala, 1998, and the relationships among the species that occur in South America, is presented. Centris (Paracentris) is a group of New World bees of amphitropical distribution, especially diversified in the Andes and in the xeric areas of South and North America. Thirty-one species were included in the analysis, four considered as outgroup, and 49 characters, all from external morphology and genitalia of adult specimens. Parsimony analyses with equal weights for the characters and successive weighting were performed with the programs NONA and PAUP, and analyses of implied weighting with the program PeeWee. The strict consensus among the trees obtained in all the analyses indicates that C. (Paracentris), as previously recognized, is a paraphyletic group. In order to eliminate that condition, the subgenera C. (Acritocentris), C. (Exallocentris) and C. (Xerocentris), all described by SNELLING (1974) are synonymized under C. (Paracentris). The subgenus C. (Penthemisia) Moure, 1950, previously considered a synonym of C. (Paracentris), is reinstated, but in a more restricted sense than originally proposed and with the following species: Centris brethesi Schrottky, 1902; C. buchholzi Herbst, 1918; C. chilensis (Spinola, 1851), C. mixta mixta Friese, 1904, and C. mixta tamarugalis Toro & Chiappa, 1989. Centris mixta, previously recognized as the only South American species of the subgenus C. (Xerocentris), a group supposedly amphitropical, came out as the sister-species of C. buchholzi. The following South American species were recognized under Centris (Paracentris): Centris burgdorfi Friese, 1901; C. caelebs Friese, 1900; C. cordillerana Roig-Alsina, 2000; C. euphenax Cockerell, 1913; C. flavohirta Friese, 1900; C. garleppi (Schrottky, 1913); C. klugii Friese, 1900; C. lyngbyei Jensen-Haarup, 1908; C. mourei Roig-Alsina, 2000; C. neffi Moure, 2000; C. nigerrima (Spinola, 1851); C. toroi sp. nov.; C. tricolor Friese, 1900; C. unifasciata (Schrottky, 1913), and C. vogeli Roig-Alsina, 2000. The relationships among the subgenera of the "Centris group" were: (Xanthemisia (Penthemisia (Centris s. str. - Paracentris))). Centris xanthomelaena Moure & Castro 2001, an endemic species of the Caatinga and previously considered a C. (Paracentris), came out as the sister group of C. (Centris) s. str. A new species of C. (Paracentris) from Chile is described: Centris toroi sp. nov. Lectotypus designations and redescriptions are presented for Centris burgdorfi, C. caelebs, C. lyngbyei, C. tricolor, C. autrani Vachal, 1904 and C. smithii Friese, 1900. New synonyms proposed: C. buchholzi Herbst, 1918 = Centris wilmattae Cockerell, 1926 syn. nov.; C. caelebs Friese, 1900 = Paracentris fulvohirta Cameron, 1903. The female of C. vogeli Roig-Alsina, 2000 and the male of C. xanthomelaena are described.
Resumo:
The genus Anthidium Fabricius in the South America: key for the species, descriptive notes, and geographical distribution (Hymenoptera, Megachilidae, Anthidiini). The Anthidiini, in South America, is represented by a single genus Anthidium Fabricius, 1804 (type-species: Apis manicata Linnaeus, 1758). Thirty nine species are treated in this paper, as follows: Anthidium alsinai Urban, 2001; A. andinum Joergensen, 1912; A. anurospilum Moure, 1957 nom. reval. (formerly = A. espinosai Ruiz, 1938); A. atricaudum Cockerell, 1926; A. aymara Toro & Rodríguez, 1998; A. chilense Spinola, 1851; A. chubuti Cockerell, 1910; A. colliguayanum Toro & Rojas, 1970; A. cuzcoense Schrottky, 1910; A. danieli Urban, 2001; A. decaspilum Moure, 1957; A. deceptum Smith, 1879; A. edwini Ruiz, 1935; A. espinosai Ruiz, 1938; A. falsificum Moure, 1957; A. friesei Cockerell, 1911; A. funereum Schletterer, 1890; A. garleppi Schrottky, 1910 = A. matucanense Cockerell, 1914 syn. nov.; A. gayi Spinola, 1851; A. igori Urban, 2001; A. larocai Urban, 1997; A. latum Schrottky, 1902; A. luizae Urban, 2001; A. manicatum (Linnaeus, 1758); A. masunariae Urban, 2001; A. nigerrimum Schrottky, 1910; A. paitense Cockerell, 1926; A. penai Moure, 1957; A. peruvianum Schrottky, 1910; A. rafaeli Urban, 2001; A. rozeni Urban, 2001; A. rubripes Friese, 1908 = A. boliviense Friese, 1920 syn. nov. = A. adriani Ruiz, 1935 syn. nov. = A. kuscheli Moure, 1957 syn. nov.; A. sanguinicaudum Schwarz, 1933; A. sertanicola Moure & Urban, 1964; A. tarsoi Urban, 2001; A. toro Urban. 2001; A. vigintiduopunctatum Friese, 1904; A. vigintipunctatum Friese, 1908, and A. weyrauchi Schwarz, 1943. Some taxonomic comments are made for each species, and new data on geographic distribution are also given. The females of A. andinum, A. igori, A. rozeni and the male of A. anurospilum are described for the first time. Identification keys (for males and females), as well as illustrations for almost all species, are provided.
Resumo:
Species of Adelpha Hübner, [1819] (Lepidoptera, Nymphalidae, Limenitidinae) occurring in Rio Grande do Sul State, Brazil. Based on literature, collections and sampled butterflies, a list of twelve species of Adelpha Hübner occurring in Rio Grande do Sul State is presented, including host plants. Adelpha epizygis Fruhstorfer, [1916], Adelpha falcipennis Fruhstorfer, [1916], Adelpha goyama Schaus, 1902 and Adelpha isis (Drury, 1782) are new reports to Rio Grande do Sul. The species are illustrated and keyed.
Resumo:
The genus Xylocopa Latreille in Rio Grande do Sul, Brazil (Hymenoptera, Anthophoridae). A survey of the genus Xylocopa Latreille, 1802 is given for Rio Grande do Sul, the southernmost State of Brazil. Data are based on several studies on the bee fauna of southern Brazil and on unpublished observations. A key is provided to the species (males and females) and information on distribution, nesting habits and relation to flowers. Rio Grande do Sul is strikingly rich in species of Xylocopa because of the diversity of habitats and its geographic position in the transition of tropical/subtropical to temperate climate. Nineteen species, classified into ten subgenera, have been recorded in Rio Grande do Sul. Here we maintain the subgenera Ioxylocopa, Megaxylocopa and Xylocospila, which were put into synonymy recently by Minckley (1998). The species are: Xylocopa (Dasyxylocopa) bimaculata Friese, 1903; Xylocopa (Ioxylocopa) chrysopoda Schrottky, 1902; Xylocopa (Megaxylocopa) frontalis (Olivier, 1789); Xylocopa (Nanoxylocopa) ciliata Burmeister, 1876; Xylocopa (Neoxylocopa) augusti Lepeletier, 1841; Xylocopa (N.) brasilianorum (Linnaeus, 1767); Xylocopa (N.) haematospila Moure, 1951; Xylocopa (N.) hirsutissima Maidl, 1912; Xylocopa (N.) nigrocincta Smith, 1854; Xylocopa (N.) ordinaria Smith, 1874; Xylocopa (N.) suspecta Moure & Camargo, 1988; Xylocopa (N.) tacanensis Moure, 1949; Xylocopa (Schonnherria) macrops Lepeletier, 1841; Xylocopa (S.) simillima Smith, 1854; Xylocopa (S.) splendidula Lepeletier, 1841; Xylocopa (S.) varians Smith, 1874; Xylocopa (Stenoxylocopa) artifex Smith, 1874; Xylocopa (Xylocopoda) elegans Hurd & Moure, 1963; Xylocopa (Xylocopsis) funesta Maidl, 1912; Xylocopa (Xylocospila) bambusae Schrottky, 1902. Xylocopa tacanensis is for the first time recorded in Brasil.
Resumo:
This paper presents a five years survey of endoparasitoids obtained from the larvae of frugivorous Tephritidae and Lonchaeidae flies. The insects were reared from cultivated and wild fruits collected in areas of the cerrado in the State of Mato Grosso do Sul, Brazil. The flies obtained from 14 host fruit species were eight Anastrepha species, Ceratitis capitata (Wiedemann, 1824) (Tephritidae); Dasiops sp. and Neosilba spp. (Lonchaeidae). Eleven parasitoid species were collected: Braconidae - Asobara anastrephae (Muesebek, 1958), Doryctobracon areolatus (Szépligeti, 1911), D. fluminensis (Costa Lima, 1938), Opius bellus Gahan, 1930 and Utetes anastrephae (Viereck, 1913); Figitidae - Aganaspis nordlanderi Wharton, 1998, Lopheucoila anastrephae (Rhower, 1919), Odontosema anastrephae (Borgmeier, 1935) and Trybliographa infuscata Gallardo, Díaz & Uchôa-Fernandes, 2000 and, Pteromalidae - Spalangia gemina Boucek, 1963 and S. endius Walker, 1839. In all cases only one parasitoid emerged per puparium. D. areolatus was the most abundant and frequent parasitoid of fruit fly species, as was L. anastrephae in Neosilba spp. larvae. This is the first record of A. nordlanderi in the midwestern Brazilian region.
Resumo:
The present paper deals with the phlebotomine species captured during the period from January 1998 to June 2000 in 12 caves located in the Serra da Bodoquena, situated in the south central region of Mato Grosso do Sul State, Brazil. Three of the caves are situated further north (in Bodoquena county), seven in the central area (Bonito county) and two in the south (Jardim county). These last two caves and three of those in Bonito are located at the west side of the ridge. Eighteen species of phlebotomines were captured within the caves: Brumptomyia avellari (Costa Lima, 1932), Brumptomyia brumpti (Larrousse, 1920), Brumptomyia cunhai (Mangabeira, 1942), Brumptomyia galindoi (Fairchild & Hertig, 1947), Evandromyia corumbaensis (Galati, Nunes, Oshiro & Rego, 1989), Lutzomyia almerioi Galati & Nunes, 1999, Lutzomyia longipalpis (Lutz & Neiva, 1912), Martinsmyia oliveirai (Martins, Falcão & Silva, 1970), Micropygomyia acanthopharynx (Martins, Falcão & Silva, 1962), Micropygomyia peresi (Mangabeira, 1942), Micropygomyia quinquefer (Dyar, 1929), Nyssomyia whitmani (Antunes & Coutinho, 1939), Psathyromyia campograndensis (Oliveira, Andrade-Filho, Falcão & Brazil, 2001), Psathyromyia punctigeniculata (Floch & Abonnenc, 1944), Psathyromyia shannoni (Dyar, 1929), Pintomyia kuscheli (Le Pont, Martinez, Torrez-Espejo & Dujardin, 1998), Sciopemyia sordellii (Shannon & Del Ponte, 1927) and Sciopemyia sp. A total of 29,599 phlebotomine sandflies was obtained. Lutzomyia almerioi was absolutely predominant (91.5%) over the other species on both sides of the Bodoquena ridge, with the exception of the southern caves in which it was absent. It presents summer predominance, with nocturnal and diurnal activities. The species breeds in the caves and was captured during daytime both in the dark area and in the mouth of the caves. Martinsmyia oliveirai, the second most frequent sandfly, also presents a summer peak and only predominated over the other species in one cave, in which there were human residues.0
Resumo:
The lacewings are very voracious predators of aphids. The objective of this research was to evaluate the occurrence of adult chrysopids in areas of Pinus reforestation where the giant conifer aphid Cinara spp. (Hemiptera: Aphididae) is causing severe damages. A total of 47 specimens were collected during one year and identified as: Chrysoperla externa (Hagen, 1861), Leucochrysa (Nodita) intermedia (Scheneir, 1851) and Leucochrysa (Nodita) vieirana (Navás, 1913). The captures in the area where the plants were one year old represented about 75% of the adults probably due to the high Cinara infestation on the trees in this area. The chrysopids were recorded mostly during the summer, possibly influenced by temperature.