1000 resultados para Convertion reactions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Physicians and scientists use a broad spectrum of terms to classify contrast media (CM)-induced adverse reactions. In particular, the designation of hypersensitivity reactions is quite varied. Consequently, comparisons of different papers dealing with this subject are difficult or even impossible. Moreover, general descriptions may lead to problems in understanding reactions in patients with a history of adverse CM-reactions, and in efficiently managing these patients. Therefore, the goal of this paper is to suggest an easy system to clearly classify these reactions. The proposed three-step systems (3SS) is built up as follows: step 1 exactly describes the clinical features, including their severity; step 2 categorizes the time point of the onset (immediate or nonimmediate); and step 3 generally classifies the reaction (hypersensitivity or nonhypersensitivity reaction). The 3SS may facilitate better understanding of the clinical manifestations of adverse CM reactions and may support the prevention of these reactions on the basis of personalized medicine approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method for the production of macrocyclic polystyrene via ring closing of a linear !,"-dibrominated polystyrene by an Atom Transfer Radical Coupling (ATRC) reaction is described. The dibrominated polystyrene chain was produced from two simultaneous atom transfer radical polymerizations (ATRPs) originating from a dibrominated benzal bromide initiator. To ensure the retention of the halogen end groups polymerization was allowed to proceed to less than 50% conversion. Using this precursor in an intramolecular ATRC (ring closing) reaction was found to yield in excess of 90% cyclic product based on refractive index-gel permeation chromatography (GPC) analysis. The cyclic architecture of the polymer was verified by GPC, Nuclear Magnetic Resonance (NMR), and mass spectrometry analysis. The utility of this method has been expanded by the addition of 2-methyl-2-nitrosopropane to the coupling reaction, which allows for the coupling to proceed at a faster rate and to yield macrocycles with incorporated alkoxyamine functionality. The alkoxyamine functionality allows for degradation of the cycles at high temperatures (>125° C) and we hypothesize that it may allow the macrocycles to act as a macroinitiator for a ring expansion polymerization in future studies.