994 resultados para Continuous vector fields
Hot spots for diversity of Magnaporthe oryzae physiological races in irrigated rice fields in Brazil
Resumo:
The objective of this work was to evaluate the Magnaporthe oryzae pathotype diversity in new commercial irrigated rice fields in the Araguaia River Valley, state of Tocantins, Brazil. The causal agent of rice blast has heavily affected rice production in the region. Despite the efforts of breeding programs, blast resistance breakdown has been recorded shortly after the release of new resistant cultivars developed for the region. Among the causes of resistance breakage is the capacity of the fungus to rapidly develop new pathotypes. A sample of 479 M. oryzae monosporic isolates was obtained and tested using the international rice blast differential set. Isolate collections were made in small areas designed as trap nurseries and in scattered sites in their vicinity. Analysis of 250 M. oryzae isolates from three trap nurseries indicated the presence of 45 international M. oryzae races belonging to seven pathotype groups (IA-IG). In the isolates tested, 61 M. oryzae pathotypes belonging to all but the IH group were detected. The new areas of irrigated rice in the Araguaia River Valley have the highest diversity of M. oryzae pathotypes reported so far in Brazil.
Resumo:
Breast milk transmission of HIV remains an important mode of infant HIV acquisition. Enhancement of mucosal HIV-specific immune responses in milk of HIV-infected mothers through vaccination may reduce milk virus load or protect against virus transmission in the infant gastrointestinal tract. However, the ability of HIV/SIV strategies to induce virus-specific immune responses in milk has not been studied. In this study, five uninfected, hormone-induced lactating, Mamu A*01(+) female rhesus monkey were systemically primed and boosted with rDNA and the attenuated poxvirus vector, NYVAC, containing the SIVmac239 gag-pol and envelope genes. The monkeys were boosted a second time with a recombinant Adenovirus serotype 5 vector containing matching immunogens. The vaccine-elicited immunodominant epitope-specific CD8(+) T lymphocyte response in milk was of similar or greater magnitude than that in blood and the vaginal tract but higher than that in the colon. Furthermore, the vaccine-elicited SIV Gag-specific CD4(+) and CD8(+) T lymphocyte polyfunctional cytokine responses were more robust in milk than in blood after each virus vector boost. Finally, SIV envelope-specific IgG responses were detected in milk of all monkeys after vaccination, whereas an SIV envelope-specific IgA response was only detected in one vaccinated monkey. Importantly, only limited and transient increases in the proportion of activated or CCR5-expressing CD4(+) T lymphocytes in milk occurred after vaccination. Therefore, systemic DNA prime and virus vector boost of lactating rhesus monkeys elicits potent virus-specific cellular and humoral immune responses in milk and may warrant further investigation as a strategy to impede breast milk transmission of HIV.
Resumo:
Spatial data analysis mapping and visualization is of great importance in various fields: environment, pollution, natural hazards and risks, epidemiology, spatial econometrics, etc. A basic task of spatial mapping is to make predictions based on some empirical data (measurements). A number of state-of-the-art methods can be used for the task: deterministic interpolations, methods of geostatistics: the family of kriging estimators (Deutsch and Journel, 1997), machine learning algorithms such as artificial neural networks (ANN) of different architectures, hybrid ANN-geostatistics models (Kanevski and Maignan, 2004; Kanevski et al., 1996), etc. All the methods mentioned above can be used for solving the problem of spatial data mapping. Environmental empirical data are always contaminated/corrupted by noise, and often with noise of unknown nature. That's one of the reasons why deterministic models can be inconsistent, since they treat the measurements as values of some unknown function that should be interpolated. Kriging estimators treat the measurements as the realization of some spatial randomn process. To obtain the estimation with kriging one has to model the spatial structure of the data: spatial correlation function or (semi-)variogram. This task can be complicated if there is not sufficient number of measurements and variogram is sensitive to outliers and extremes. ANN is a powerful tool, but it also suffers from the number of reasons. of a special type ? multiplayer perceptrons ? are often used as a detrending tool in hybrid (ANN+geostatistics) models (Kanevski and Maignank, 2004). Therefore, development and adaptation of the method that would be nonlinear and robust to noise in measurements, would deal with the small empirical datasets and which has solid mathematical background is of great importance. The present paper deals with such model, based on Statistical Learning Theory (SLT) - Support Vector Regression. SLT is a general mathematical framework devoted to the problem of estimation of the dependencies from empirical data (Hastie et al, 2004; Vapnik, 1998). SLT models for classification - Support Vector Machines - have shown good results on different machine learning tasks. The results of SVM classification of spatial data are also promising (Kanevski et al, 2002). The properties of SVM for regression - Support Vector Regression (SVR) are less studied. First results of the application of SVR for spatial mapping of physical quantities were obtained by the authorsin for mapping of medium porosity (Kanevski et al, 1999), and for mapping of radioactively contaminated territories (Kanevski and Canu, 2000). The present paper is devoted to further understanding of the properties of SVR model for spatial data analysis and mapping. Detailed description of the SVR theory can be found in (Cristianini and Shawe-Taylor, 2000; Smola, 1996) and basic equations for the nonlinear modeling are given in section 2. Section 3 discusses the application of SVR for spatial data mapping on the real case study - soil pollution by Cs137 radionuclide. Section 4 discusses the properties of the modelapplied to noised data or data with outliers.
Resumo:
Purpose: We previously demonstrated efficient retinal rescue of RPE65 mouse models (Rpe65-/- (Bemelmans et al, 2006) and Rpe65R91W/R91W mice) using a HIV1-derived lentiviral vector encoding for the mouse RPE65 cDNA. In order to optimize a lentiviral vector as an alternative tool for RPE65-derived Leber Congenital Amaurosis clinical trials, we evaluated the efficiency of an integration-deficient lentiviral vector (IDLV) encoding the human RPE65 cDNA to restore retinal function in the Rpe65R91W/R91W mice. Methods: An HIV-1-derived lentiviral vector expressing either the hrGFPII or the human Rpe65 cDNA under the control of a 0.8 kb fragment of the human Rpe65 promoter (R0.8) was produced by transient transfection of 293T cells. A LQ-integrase mutant was used to generate the IDLV vectors. IDLV-R0.8-hRPE65 or hrGFPII were injected subretinally into 1 month-old Rpe65R91W/R91W mice. Functional rescue was assessed by ERG (1 and 3 months post-injection) and cone survival by immunohistology. Results: An increased light sensitivity was detected by scotopic ERG in animals injected with IDLV-R0.8-hRPE65 compared to hrGFPII-treated animals or untreated mice. However the improvement was delayed compared to integration-proficient LV and observed at 3 months but not 1 month post-injection. Immunolabelling of cone markers showed an increased number of cones in the transduced area compared to control groups. Conclusions: The IDLV-R0.8-hRPE65 vectors allow retinal improvement in the Rpe65R91W/R91W mice. Both rod function and cone survival were demonstrated even if there is a delay in the rescue as assessed by scotopic ERG. Integration-deficient vectors minimize insertional mutagenesis and thus are safer candidates for human application. Further experiments using large animals are now needed to validate correct gene transfer and expression of the RPE65 gene as well as tolerance of the vector after subretinal injection before envisaging a clinical trial application.