994 resultados para Clarke, James--active 1722
Resumo:
Transgenic overexpression (40- to 100-fold) of the wild-type human beta2-adrenergic receptor in the hearts of mice leads to a marked increase in cardiac contractility, which is apparently due to the low level of spontaneous (i.e., agonist-independent) activity inherent in the receptor. Here we report that transgenic mice expressing a mutated constitutively active form of the receptor (CAM) show no such phenotype, owing to its modest expression (3-fold above endogenous cardiac beta-adrenergic receptor levels). Surprisingly, treatment of the animals with a variety of beta-adrenergic receptor ligands leads to a 50-fold increase in CAM beta2-adrenergic receptor expression, by stabilizing the CAM beta2-adrenergic receptor protein. Receptor up-regulation leads in turn to marked increases in adenylate cyclase activity, atrial tension determined in vitro, and indices of cardiac contractility determined in vivo. These results illustrate a novel mechanism for regulating physiological responses, i.e., ligand-induced stabilization of a constitutively active but inherently unstable protein.
Resumo:
Transgenic mice were generated by using the alpha-myosin heavy chain promoter coupled to the coding sequence of a constitutively active mutant alpha 1B-adrenergic receptor (AR). These transgenic animals demonstrated cardiac-specific expression of this alpha 1-AR with resultant activation of phospholipase C as shown by increased myocardial diacylglycerol content. A phenotype consistent with cardiac hypertrophy developed in adult transgenic mice with increased heart/body weight ratios, myocyte cross-sectional areas, and ventricular atrial natriuretic factor mRNA levels relative to nontransgenic controls. These transgenic animals may provide insight into the biochemical triggers that induce hypertrophy in cardiac disease and serve as a convenient experimental model for studies of this condition.
Resumo:
The beta 2-adrenergic receptor (beta 2AR) can be constitutively activated by mutations in the third intracellular loop. Whereas the wild-type receptor exists predominantly in an inactive conformation (R) in the absence of agonist, the mutant receptor appears to spontaneously adopt an active conformation (R*). We now demonstrate that not only is the mutant beta 2AR constitutively active, it is also constitutively desensitized and down-regulated. To assess whether the mutant receptor can constitutively engage a known element of the cellular desensitization machinery, the receptor was purified and reconstituted into phospholipid vesicles. These preparations retained the essential properties of the constitutively active mutant receptor: agonist-independent activity [to stimulate guanine nucleotide-binding protein (Gs)-GTPase] and agonist-specific increase in binding affinity. Moreover, the purified mutant receptor, in the absence of agonist, was phosphorylated by recombinant beta AR-specific kinase (beta ARK) in a fashion comparable to the agonist-occupied wild-type receptor. Thus, the conformation of the mutated receptor is equivalent to the active conformation (R*), which stimulates Gs protein and is identical to the beta ARK substrate.
Resumo:
The beta-adrenergic receptor kinase (beta ARK) phosphorylates its membrane-associated receptor substrates, such as the beta-adrenergic receptor, triggering events leading to receptor desensitization. beta ARK activity is markedly stimulated by the isoprenylated beta gamma subunit complex of heterotrimeric guanine nucleotide-binding proteins (G beta gamma), which translocates the kinase to the plasma membrane and thereby targets it to its receptor substrate. The amino-terminal two-thirds of beta ARK1 composes the receptor recognition and catalytic domains, while the carboxyl third contains the G beta gamma binding sequences, the targeting domain. We prepared this domain as a recombinant His6 fusion protein from Escherichia coli and found that it had both independent secondary structure and functional activity. We demonstrated the inhibitory properties of this domain against G beta gamma activation of type II adenylyl cyclase both in a reconstituted system utilizing Sf9 insect cell membranes and in a permeabilized 293 human embryonic kidney cell system. Gi alpha-mediated inhibition of adenylyl cyclase was not affected. These data suggest that this His6 fusion protein derived from the carboxyl terminus of beta ARK1 provides a specific probe for defining G beta gamma-mediated processes and for studying the structural features of a G beta gamma-binding domain.