993 resultados para Cladding band structure
Resumo:
Triatoma venosa presents a restricted geographical distribution in America and is considered as a secondary vector of Chagas disease in Colombia and Ecuador. A total of 120 adult insects were collected in domestic and peridomestic habitats in an endemic area of the department of Boyacá, Colombia, in order to determine their genetic structure through morphometric and molecular techniques. The head and wings of each specimen were used for the analyses of size, shape, and sexual dimorphism. A significant sexual dimorphism was found, although no differences in size among the studied groups were detected. Differences were found in the analyzed structures except for male heads. DNA was extracted from the legs in order to carry out the internal transcriber space-2 (ITS-2) amplification and the randon amplified polymorphic DNA (RAPD) analyses. Length polymorphisms were not detected in the ITS-2. Fst and Nm values were estimated (0.047 and 3.4, respectively). The high genetic flow found among the insects captured in the domicile and peridomiciliary environment does not permit a genetic differentiation, thus establishing the peridomicile as an important place for epidemiological surveillance.
Resumo:
The mosquito Aedes aegypti is the main vector of dengue in Venezuela. The genetic structure of this vector was investigated in 24 samples collected from eight geographic regions separated by up to 1160 km. We examined the distribution of a 359-basepair region of the NADH dehydrogenase subunit 4 mitochondrial gene among 1144 Ae. aegypti from eight collections. This gene was amplified by the polymerase chain reaction and tested for variation using single strand conformation polymorphism analysis. Seven haplotypes were detected throughout Venezuela and these were sorted into two clades. Significant differentiation was detected among collections and these were genetically isolated by distance.
Resumo:
A hydrophobic cuticle is deposited at the outermost extracellular matrix of the epidermis in primary tissues of terrestrial plants. Besides forming a protective shield against the environment, the cuticle is potentially involved in several developmental processes during plant growth. A high degree of variation in cuticle composition and structure exists between different plant species and tissues. Lots of progress has been made recently in understanding the different steps of biosynthesis, transport, and deposition of cuticular components. However, the molecular mechanisms that underlie cuticular function remain largely elusive.