995 resultados para Chemical additive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

During past MANTRA campaigns, ground-based measurements of several long-lived chemical species have revealed quasi-periodic fluctuations on time scales of several days. These fluctuations could confound efforts to detect long-term trends from MANTRA, and need to be understood and accounted for. Using the Canadian Middle Atmosphere Model, we investigate the role of dynamical variability in the late summer stratosphere due to normal mode Rossby waves and the impact of this variability on fluctuations in chemical species. Zonal wavenumber 1, westward travelling waves are considered with average periods of 5, 10 and 16 days. Time-lagged correlations between the temperature and nitrous oxide, methane and ozone fields are calculated in order to assess the possible impact of these waves on the chemical species. Using Fourier-wavelet decomposition and correlating the fluctuations between the temperature and chemical fields, we determine that variations in the chemical species are well-correlated with the 5- and 10-day waves between 30 and 60 km, although the nature of the correlations depend strongly on altitude. Interannual variability of the waves is also examined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time-resolved kinetic studies of silylene, SiH2, generated by laser flash photolysis of 1-silacyclopent-3-ene and phenylsilane, have been carried out to obtain rate constants for its bimolecular reactions with methanol, ethanol, 1-propanol, 1-butanol and 2-methyl-1-butanol. The reactions were studied in the gas phase over the pressure range 1-100 Torr in SF6 bath gas, at room temperature. In the study with methanol several buffer gases were used. All five reactions showed pressure dependences characteristic of third body assisted association reactions. The rate constant pressure dependences were modelled using RRKM theory, based on Eo values of the association complexes obtained by ab initio calculation (G3 level). Transition state models were adjusted to fit experimental fall-off curves and extrapolated to obtain k∞ values in the range 1.9 to 4.5 × 10-10 cm3 molecule-1 s-1. These numbers, corresponding to the true bimolecular rate constants, indicate efficiencies of between 16 and 67% of the collision rates for these reactions. In the reaction of SiH2 + MeOH there is a small kinetic component to the rate which is second order in MeOH (at low total pressures). This suggests an additional catalysed reaction pathway, which is supported by the ab initio calculations. These calculations have been used to define specific MeOH-for-H2O substitution effects on this catalytic pathway. Where possible our experimental and theoretical results are compared with those of previous studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time-resolved kinetic studies of the reaction of silylene, SiH2, generated by 193 nm laser flash photolysis of silacyclopent-3-ene, have been carried out in the presence of ammonia, NH3. Second order kinetics were observed. The reaction was studied in the gas phase at 10 Torr total pressure in SF6 bath gas at each of the three temperatures, 299, 340 and 400 K. The second order rate constants (laser pulse energy of 60 mJ/pulse) fitted the Arrhenius equation: log(k/cm3 molecule-1 s-1) = (-10.37 ± 0.17) + (0.36 ± 1.12 kJ mol-1)/RTln10 Experiments at other pressures showed that these rate constants were unaffected by pressure in the range 10-100 Torr, but showed small decreases in value at 3 and 1 Torr. There was also a weak intensity dependence, with rate constants decreasing at laser pulse energies of 30 mJ/pulse. Ab initio calculations at the G3 level of theory, show that SiH2 + NH3 should form an initial adduct (donor-acceptor complex), but that energy barriers are too great for further reaction of the adduct. This implies that SiH2 + NH3 should be a pressure dependent association reaction. The experimental data are inconsistent with this and we conclude that SiH2 decays are better explained by reaction of SiH2 with the amino radical, NH2, formed by photodissociation of NH3 at 193 nm. The mechanism of this previously unstudied reaction is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Correlations between various chemical species simulated by the Canadian Middle Atmosphere Model, a general circulation model with fully interactive chemistry, are considered in order to investigate the general conditions under which compact correlations can be expected to form. At the same time, the analysis serves to validate the model. The results are compared to previous work on this subject, both from theoretical studies and from atmospheric measurements made from space and from aircraft. The results highlight the importance of having a data set with good spatial coverage when working with correlations and provide a background against which the compactness of correlations obtained from atmospheric measurements can be confirmed. It is shown that for long-lived species, distinct correlations are found in the model in the tropics, the extratropics, and the Antarctic winter vortex. Under these conditions, sparse sampling such as arises from occultation instruments is nevertheless suitable to define a chemical correlation within each region even from a single day of measurements, provided a sufficient range of mixing ratio values is sampled. In practice, this means a large vertical extent, though the requirements are less stringent at more poleward latitudes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fungal family Clavicipitaceae includes plant symbionts and parasites that produce several psychoactive and bioprotective alkaloids. The family includes grass symbionts in the epichloae clade (Epichloë and Neotyphodium species), which are extraordinarily diverse both in their host interactions and in their alkaloid profiles. Epichloae produce alkaloids of four distinct classes, all of which deter insects, and some—including the infamous ergot alkaloids—have potent effects on mammals. The exceptional chemotypic diversity of the epichloae may relate to their broad range of host interactions, whereby some are pathogenic and contagious, others are mutualistic and vertically transmitted (seed-borne), and still others vary in pathogenic or mutualistic behavior. We profiled the alkaloids and sequenced the genomes of 10 epichloae, three ergot fungi (Claviceps species), a morning-glory symbiont (Periglandula ipomoeae), and a bamboo pathogen (Aciculosporium take), and compared the gene clusters for four classes of alkaloids. Results indicated a strong tendency for alkaloid loci to have conserved cores that specify the skeleton structures and peripheral genes that determine chemical variations that are known to affect their pharmacological specificities. Generally, gene locations in cluster peripheries positioned them near to transposon-derived, AT-rich repeat blocks, which were probably involved in gene losses, duplications, and neofunctionalizations. The alkaloid loci in the epichloae had unusual structures riddled with large, complex, and dynamic repeat blocks. This feature was not reflective of overall differences in repeat contents in the genomes, nor was it characteristic of most other specialized metabolism loci. The organization and dynamics of alkaloid loci and abundant repeat blocks in the epichloae suggested that these fungi are under selection for alkaloid diversification. We suggest that such selection is related to the variable life histories of the epichloae, their protective roles as symbionts, and their associations with the highly speciose and ecologically diverse cool-season grasses.