994 resultados para Carrier Proteins


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clathrin-mediated endocytosis, the major pathway for ligand internalization into eukaryotic cells, is thought to be initiated by the clustering of clathrin and adaptors around receptors destined for internalization. However, here we report that the membrane-sculpting F-BAR domain-containing Fer/Cip4 homology domain-only proteins 1 and 2 (FCHo1/2) were required for plasma membrane clathrin-coated vesicle (CCV) budding and marked sites of CCV formation. Changes in FCHo1/2 expression levels correlated directly with numbers of CCV budding events, ligand endocytosis, and synaptic vesicle marker recycling. FCHo1/2 proteins bound specifically to the plasma membrane and recruited the scaffold proteins eps15 and intersectin, which in turn engaged the adaptor complex AP2. The FCHo F-BAR membrane-bending activity was required, leading to the proposal that FCHo1/2 sculpt the initial bud site and recruit the clathrin machinery for CCV formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the past decade, many molecular components of clathrin-mediated endocytosis have been identified and proposed to play various hypothetical roles in the process [Nat. Rev. Neurosci. 1 (2000) 161; Nature 422 (2003) 37]. One limitation to the evaluation of these hypotheses is the efficiency and resolution of immunolocalization protocols currently in use. In order to facilitate the evaluation of these hypotheses and to understand more fully the molecular mechanisms of clathrin-mediated endocytosis, we have developed a protocol allowing enhanced and reliable subcellular immunolocalization of proteins in synaptic endocytic zones in situ. Synapses established by giant reticulospinal axons in lamprey are used as a model system for these experiments. These axons are unbranched and reach up to 80-100 microm in diameter. Synaptic active zones and surrounding endocytic zones are established on the surface of the axonal cylinder. To provide access for antibodies to the sites of synaptic vesicle recycling, axons are lightly fixed and cut along their longitudinal axis. To preserve the ultrastructure of the synaptic endocytic zone, antibodies are applied without the addition of detergents. Opened axons are incubated with primary antibodies, which are detected with secondary antibodies conjugated to gold particles. Specimens are then post-fixed and processed for electron microscopy. This approach allows preservation of the ultrastructure of the endocytic sites during immunolabeling procedures, while simultaneously achieving reliable immunogold detection of proteins on endocytic intermediates. To explore the utility of this approach, we have investigated the localization of a GTPase, dynamin, on clathrin-coated intermediates in the endocytic zone of the lamprey giant synapse. Using the present immunogold protocol, we confirm the presence of dynamin on late stage coated pits [Nature 422 (2003) 37] and also demonstrate that dynamin is recruited to the coat of endocytic intermediates from the very early stages of the clathrin coat formation. Thus, our experiments show that the current pre-embedding immunogold method is a useful experimental tool to study the molecular mechanisms of synaptic vesicle recycling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ArnT is a glycosyltransferase that catalyses the addition of 4-amino-4-deoxy-L-arabinose (L-Ara4N) to the lipid A moiety of the lipopolysaccharide. This is a critical modification enabling bacteria to resist killing by antimicrobial peptides. ArnT is an integral inner membrane protein consisting of 13 predicted transmembrane helices and a large periplasmic C-terminal domain. We report here the identification of a functional motif with a canonical consensus sequence DEXRYAX(5)MX(3)GXWX(9)YFEKPX(4)W spanning the first periplasmic loop, which is highly conserved in all ArnT proteins examined. Site-directed mutagenesis demonstrated the contribution of this motif in ArnT function, suggesting that these proteins have a common mechanism. We also demonstrate that the Burkholderia cenocepacia and Salmonella enterica serovar Typhimurium ArnT C-terminal domain is required for polymyxin B resistance in vivo. Deletion of the C-terminal domain in B. cenocepacia ArnT resulted in a protein with significantly reduced in vitro binding to a lipid A fluorescent substrate and unable to catalyse lipid A modification with L-Ara4N. An in silico predicted structural model of ArnT strongly resembled the tertiary structure of Campylobacter lari PglB, a bacterial oligosaccharyltransferase involved in protein N-glycosylation. Therefore, distantly related oligosaccharyltransferases from ArnT and PglB families operating on lipid and polypeptide substrates, respectively, share unexpected structural similarity that could not be predicted from direct amino acid sequence comparisons. We propose that lipid A and protein glycosylation enzymes share a conserved catalytic mechanism despite their evolutionary divergence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Depletion of highly abundant proteins is an approved step in blood plasma analysis by mass spectrometry (MS). In this study, we explored a precipitation and differential protein solubility approach as a fractionation strategy for abundant protein removal from plasma. Total proteins from plasma were precipitated with 90% saturated ammonium sulfate, followed by differential solubilization in 55% and 35% saturated ammonium sulfate solutions. Using a four hour liquid chromatography (LC) gradient and an LTQ-Orbitrap XL mass spectrometer, a total of 167 and 224 proteins were identified from the 55% and 35% ammonium sulfate fractions, whereas 235 proteins were found in the remaining protein fractions with at least two unique peptides. SDS-PAGE and exclusive total spectrum counts from LC-MS/MS analyses clearly showed that majority of the abundant plasma proteins were solubilized in 55% and 35% ammonium sulfate solutions, indicating that the remaining protein fraction is of potential interest for identification of less abundant plasma proteins. Serum albumin, serotransferrin, alpha-1-antitrypsin and transthyretin were the abundant proteins that were highly enriched in 55% ammonium sulfate fractions. Immunoglobulins, complement system proteins, and apolipoproteins were among other abundant plasma proteins that were enriched in 35% ammonium sulfate fractions. In the remaining protein fractions a total of 40 unique proteins were identified of which, 32 proteins were identified with at least 10 exclusive spectrum counts. According to PeptideAtlas, 9 of these 32 proteins were estimated to be present at low μg ml(-1) (0.12-1.9 μg ml(-1)) concentrations in the plasma, and 17 at low ng ml(-1) (0.1-55 ng ml(-1)) range.