998 resultados para Carathéodory teorema estensione misura
Resumo:
Questa tesi verte sulla traduzione di ricette scritte a mano o tramandate oralmente da diverse generazioni di alcune famiglie russe. Anche tali ricette, e non solo quelle riportate nei libri di cucina stampati, contengono preziose informazioni sulle abitudini alimentari dei russi, nonché sulla loro vita quotidiana e sulla storia del loro paese. Ho intervistato alcuni membri di queste famiglie e inviato un questionario online ad altri. Ho fotografato o chiesto di mandarmi fotografie delle ricette trascritte a mano da loro stessi o da alcuni familiari su libri o fogli conservati in casa. Alcune di queste ricette sono state scritte decenni fa, altre sono rielaborazioni più recenti di ricette tradizionali della famiglia o invenzioni delle ultime generazioni. Nella prima parte della mia tesi ho analizzato le tappe fondamentali della letteratura culinaria russa e i processi con cui le ricette tradizionali vengono tramandate alle generazioni successive, sia sotto forma di libri di cucina scritti da chef e autorità nel campo, sia in ambito familiare, trascritte a mano su fogli e quaderni oppure insegnate direttamente, in forma orale. In seguito sono riportate le traduzioni delle ricette: dal boršč della mamma di Kristina, una mia compagna di università alla Moscow State Univesity, alle antiche ricette della bisnonna della mia professoressa Maria Arapova, ancora scritte con l’ortografia prerivoluzionaria, alle specialità di Marzhan, 15 anni, ma già abilissima ai fornelli. Le ricette sono precedute da una breve introduzione sulla storia del piatto oppure da memorie e aneddoti familiari legati ad esso che mi sono stati raccontati durante le interviste o nelle risposte al questionario. Segue un’analisi dei principali problemi affrontati durante la traduzione. In primo luogo, quelli legati al genere testuale: la ricetta è un testo prescrittivo, il che rende l’efficacia della traduzione un aspetto cruciale, ed è anche una tipologia testuale ricca di elementi culturally specific, ad esempio ingredienti e unità di misura. In secondo luogo, vengono analizzate le difficoltà legate al tipo particolare di ricette tradotte: testi ad uso domestico e familiare, ricchi di omissioni e spesso scritti in una grafia difficile da decifrare.
Resumo:
L’intento dell’elaborato è quello di ricavare i limiti teorici ai quali è soggetta l’intensità del campo magnetico delle pulsar. Troveremo due relazioni: una che esprime il valore massimo dell’intensità del campo magnetico per una pulsar, e una che ne esprime il valore minimo. Combineremo infine i nostri due risultati in una disequazione, nella quale l'intensità del campo magnetico di una pulsar è minorata e maggiorata dai due termini trovati. Il valore massimo che può assumere l’intensità del campo magnetico di una pulsar verrà derivato dalla condizione di stabilità espressa dal teorema del viriale per un sistema sferico rotante in presenza di un campo magnetico. Enunceremo inizialmente il teorema del viriale nella sua forma generale, dopodiché ne presenteremo l'espressione in un caso statico in presenza di un campo magnetico. Abbandoneremo poi il caso statico per includere l'effetto della rotazione, non trascurabile nel caso delle pulsar. Dopo aver adattato la condizione di stabilità derivante dal teorema del viriale al nostro modello di pulsar, ricaveremo il valore massimo dell'intensità del campo magnetico. Il valore minimo che può assumere l’intensità del campo magnetico di una pulsar verrà ricavato uguagliando la potenza emessa dalla pulsar mentre ruota (approssimata ad un dipolo rotante) con la perdita di energia rotazionale che si osserva normalmente per questi oggetti. Otterremo alla fine due termini che delimitano i valori che può assumere l’intensità del campo magnetico per una pulsar. Sostituendo alla relazione trovata i valori di raggio e massa tipici per una pulsar, saremo in grado di riscrivere tale relazione unicamente in funzione del periodo di rotazione della pulsar e della sua derivata rispetto al tempo. Sostituiremo i valori di periodo e derivata temporale del periodo di una pulsar esistente per avere un’idea del range di valori sotteso dai due termini trovati.
Resumo:
Lo scopo della tesi è di stimare le prestazioni del rivelatore ALICE nella rivelazione del barione Lambda_c nelle collisioni PbPb usando un approccio innovativo per l'identificazione delle particelle. L'idea principale del nuovo approccio è di sostituire l'usuale selezione della particella, basata su tagli applicati ai segnali del rivelatore, con una selezione che usi le probabilità derivate dal teorema di Bayes (per questo è chiamato "pesato Bayesiano"). Per stabilire quale metodo è il più efficiente , viene presentato un confronto con altri approcci standard utilizzati in ALICE. Per fare ciò è stato implementato un software di simulazione Monte Carlo "fast", settato con le abbondanze di particelle che ci si aspetta nel nuovo regime energetico di LHC e con le prestazioni osservate del rivelatore. E' stata quindi ricavata una stima realistica della produzione di Lambda_c, combinando i risultati noti da esperimenti precedenti e ciò è stato usato per stimare la significatività secondo la statistica al RUN2 e RUN3 dell'LHC. Verranno descritti la fisica di ALICE, tra cui modello standard, cromodinamica quantistica e quark gluon plasma. Poi si passerà ad analizzare alcuni risultati sperimentali recenti (RHIC e LHC). Verrà descritto il funzionamento di ALICE e delle sue componenti e infine si passerà all'analisi dei risultati ottenuti. Questi ultimi hanno mostrato che il metodo risulta avere una efficienza superiore a quella degli usuali approcci in ALICE e che, conseguentemente, per quantificare ancora meglio le prestazioni del nuovo metodo si dovrebbe eseguire una simulazione "full", così da verificare i risultati ottenuti in uno scenario totalmente realistico.
Resumo:
Questo elaborato si propone di approfondire lo studio dei campi finiti, in modo particolare soffermandosi sull’esistenza di una base normale per un campo finito, in quanto l'utilizzo di una tale base ha notevoli applicazioni in ambito crittografico. Vengono trattati i seguenti argomenti: elementi di base della teoria dei campi finiti, funzione traccia e funzione norma, basi duali, basi normali. Vengono date due dimostrazioni del Teorema della Base Normale, la seconda delle quali fa uso dei polinomi linearizzati ed è in realtà un po' più generale, in quanto si riferisce ai q-moduli.
Resumo:
Nel 1837 il matematico A.F. Möbius definì la funzione aritmetica mu(n) che vale 0 se n è divisibile per il quadrato di un numero primo, (-1)^k se n è il prodotto di k primi distinti e \mu(1)=1. Essa ricopre un ruolo di fondamentale importanza per quanto riguarda la distribuzione dei numeri primi, nonché per la sua duttilità nella risoluzione di diversi problemi di conteggio grazie alla formula di inversione di Möbius, che può essere pensata come un analogo formale del teorema fondamentale del calcolo integrale. Una sorprendente varietà di problemi di calcolo combinatorio si rivelano essere nient'altro che casi particolari di un problema più generale che riguarda la possibilità di invertire una somma fatta sugli elementi di un insieme parzialmente ordinato. L'obiettivo di questo elaborato è quello di illustrare come sia possibile generalizzare il concetto di funzione aritmetica estendendolo a quello di funzione di un'algebra di incidenza. Le algebre di incidenza hanno catturato l'interesse di svariati matematici a partire dagli anni '60 del secolo scorso, e si svilupparono come ambiente naturale nel quale generalizzare la formula di inversione di Mobius. La funzione di Möbius della teoria dei numeri, definita originariamente sull'insieme dei numeri interi positivi ordinato per divisibilità, può quindi essere definita su generici insiemi parzialmente ordinati.
Resumo:
La tesi tratta della formulazione dell'assioma della scelta fatta da Zermelo e di alcune sue forme equivalenti. Inoltre si parlerà della sua storia, delle critiche che gli sono state mosse e degli importanti teoremi che seguono direttamente dall'assioma. Viene anche trattato il paradosso di Hausdorff che introduce il problema della misura e il paradosso di Banach-Tarscki.
Resumo:
La tesi si prefigge di definire la molteplicità dell’intersezione tra due curve algebriche piane. La trattazione sarà sviluppata in termini algebrici, per mezzo dello studio degli anelli locali. In seguito, saranno discusse alcune proprietà e sarà proposto qualche esempio di calcolo. Nel terzo capitolo, l’interesse volgerà all’intersezione tra una varietà e un’ipersuperficie di uno spazio proiettivo n-dimensionale. Verrà definita un’ulteriore di molteplicità dell’intersezione, che costituirà una generalizzazione di quella menzionata nei primi due capitoli. A partire da questa definizione, sarà possibile enunciare una versione estesa del Teorema di Bezout. L’ultimo capitolo focalizza l’attenzione nuovamente sulle curve piane, con l’intento di studiarne la topologia in un intorno di un punto singolare. Si introduce, in particolare, l’importante nozione di link di un punto singolare.
Resumo:
In questa tesi cercherò di analizzare le funzioni di Sobolev su R}^{n}, seguendo le trattazioni Measure Theory and Fine Properties of Functions di L.C. Evans e R.F.Gariepy e l'elaborato Functional Analysis, Sobolev Spaces and Partial Differential Equations di H. Brezis. Le funzioni di Sobolev si caratterizzano per essere funzioni con le derivate prime deboli appartenenti a qualche spazio L^{p}. I vari spazi di Sobolev hanno buone proprietà di completezza e compattezza e conseguentemente sono spesso i giusti spazi per le applicazioni di analisi funzionale. Ora, come vedremo, per definizione, l'integrazione per parti è valida per le funzioni di Sobolev. È, invece, meno ovvio che altre regole di calcolo siano allo stesso modo valide. Così, ho inteso chiarire questa questione di carattere generale, con particolare attenzione alle proprietà puntuali delle funzioni di Sobolev. Abbiamo suddiviso il lavoro svolto in cinque capitoli. Il capitolo 1 contiene le definizioni di base necessarie per la trattazione svolta; nel secondo capitolo sono stati derivati vari modi di approssimazione delle funzioni di Sobolev con funzioni lisce e sono state fornite alcune regole di calcolo per tali funzioni. Il capitolo 3 darà un' interpretazione dei valori al bordo delle funzioni di Sobolev utilizzando l'operatore Traccia, mentre il capitolo 4 discute l' estensione su tutto R^{n} di tali funzioni. Proveremo infine le principali disuguaglianze di Sobolev nel Capitolo 5.