992 resultados para Calculation methodology
Resumo:
This paper describes the development of a sequential injection method to automate the fluorimetric determination of glyphosate based on a first step of oxidation to glycine by hypochlorite at 48 degrees C, followed by reaction with the fluorogenic reagent o-phthaldialdehyde in presence of 2-mercaptoethanol in borate buffer (pH > 9) to produce a fluorescent 1-(2`-hydroxyethylthio)-2-N-alkylisoindole. The proposed method has a linear response for glyphosate concentrations between 0.25 and 25.0 mu mol L(-1), with limits of detection and quantification of 0.08 and 0.25 mu mol L(-1), respectively. The sampling rate of the method is 18 samples per hour, consuming only a fraction of reagents consumed by the chromatographic method based on the same chemistry. The method was applied to study adsorption/desorption properties in a soil and in a sediment sample. Adsorption and desorption isotherms were properly fitted by Freundlich and Langmuir equations, leading to adsorption capacities of 1384 +/- 26 and 295 +/- 30 mg kg(-1) for the soil and sediment samples, respectively. These values are consistent with the literature, with the larger adsorption capacity of the soil being explained by its larger content of clay minerals, while the sediment was predominantly sandy. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This work presents the use of sequential injection analysis (SIA) and the response surface methodology as a tool for optimization of Fenton-based processes. Alizarin red S dye (C.I. 58005) was used as a model compound for the anthraquinones family. whose pigments have a large use in coatings industry. The following factors were considered: [H(2)O(2)]:[Alizarin] and [H(2)O(2)]:[FeSO(4)] ratios and pH. The SIA system was designed to add reagents to the reactor and to perform on-line sampling of the reaction medium, sending the samples to a flow-through spectrophotometer for monitoring the color reduction of the dye. The proposed system fed the statistical program with degradation data for fast construction of response surface plots. After optimization, 99.7% of the dye was degraded and the TOC content was reduced to 35% of the original value. Low reagents consumption and high sampling throughput were the remarkable features of the SIA system. (C) 2008 Published by Elsevier B.V.