1000 resultados para CONSTRUCTION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The divide-and-conquer approach of local model (LM) networks is a common engineering approach to the identification of a complex nonlinear dynamical system. The global representation is obtained from the weighted sum of locally valid, simpler sub-models defined over small regions of the operating space. Constructing such networks requires the determination of appropriate partitioning and the parameters of the LMs. This paper focuses on the structural aspect of LM networks. It compares the computational requirements and performances of the Johansen and Foss (J&F) and LOLIMOT tree-construction algorithms. Several useful and important modifications to each algorithm are proposed. The modelling performances are evaluated using real data from a pilot plant of a pH neutralization process. Results show that while J&F achieves a more accurate nonlinear representation of the pH process, LOLIMOT requires significantly less computational effort.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present a random iterative graph based hyper-heuristic to produce a collection of heuristic sequences to construct solutions of different quality. These heuristic sequences can be seen as dynamic hybridisations of different graph colouring heuristics that construct solutions step by step. Based on these sequences, we statistically analyse the way in which graph colouring heuristics are automatically hybridised. This, to our knowledge, represents a new direction in hyper-heuristic research. It is observed that spending the search effort on hybridising Largest Weighted Degree with Saturation Degree at the early stage of solution construction tends to generate high quality solutions. Based on these observations, an iterative hybrid approach is developed to adaptively hybridise these two graph colouring heuristics at different stages of solution construction. The overall aim here is to automate the heuristic design process, which draws upon an emerging research theme on developing computer methods to design and adapt heuristics automatically. Experimental results on benchmark exam timetabling and graph colouring problems demonstrate the effectiveness and generality of this adaptive hybrid approach compared with previous methods on automatically generating and adapting heuristics. Indeed, we also show that the approach is competitive with the state of the art human produced methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present an investigation into using fuzzy methodologies to guide the construction of high quality feasible examination timetabling solutions. The provision of automated solutions to the examination timetabling problem is achieved through a combination of construction and improvement. The enhancement of solutions through the use of techniques such as metaheuristics is, in some cases, dependent on the quality of the solution obtained during the construction process. With a few notable exceptions, recent research has concentrated on the improvement of solutions as opposed to focusing on investigating the ‘best’ approaches to the construction phase. Addressing this issue, our approach is based on combining multiple criteria in deciding on how the construction phase should proceed. Fuzzy methods were used to combine three single construction heuristics into three different pair wise combinations of heuristics in order to guide the order in which exams were selected to be inserted into the timetable solution. In order to investigate the approach, we compared the performance of the various heuristic approaches with respect to a number of important criteria (overall cost penalty, number of skipped exams, number of iterations of a rescheduling procedure required and computational time) on twelve well-known benchmark problems. We demonstrate that the fuzzy combination of heuristics allows high quality solutions to be constructed. On one of the twelve problems we obtained lower penalty than any previously published constructive method and for all twelve we obtained lower penalty than when any of the single heuristics were used alone. Furthermore, we demonstrate that the fuzzy approach used less backtracking when constructing solutions than any of the single heuristics. We conclude that this novel fuzzy approach is a highly effective method for heuristically constructing solutions and, as such, has particular relevance to real-world situations in which the construction of feasible solutions is often a difficult task in its own right.