998 resultados para CHROMIUM OXIDES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Iron-chromium alloys are used as a model to study the microstructural evolution of defects in irradiated structural steel components of a nuclear reactor. We examine the effects of temperature and chromium concentration on the defect evolution and segregation behavior in the early stages of damage. In situ irradiations are conducted in a transmission electron microscope (TEM) at 300°C and 450°C with 150keV iron ions in single crystal Fe14Cr and Fe19Cr bicrystal to doses of 2E15 ions/cm^2. The microstructures resulting from annealing and irradiation of the alloy are characterized by analysis of TEM micrographs and diffraction patterns and compared with those of irradiated pure iron. We found the irradiation temperature to have little effect on the microstructural development. We also found that the presence of chromium in the sample leads to defect populations with small average loop size and no extended or nested loop structures, in contrast to the populations of large extended loops seen in irradiated pure iron. A very weak dependence was found on the specific chromium content of the alloy. Chromium was shown to suppress defect growth by inhibiting defect mobility in the alloy. While defects in pure iron are highly mobile and able to grow, those in the FeCr alloys remained small and relatively motionless due to the pinning effect of the chromium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Today, the use of heavy metals and chemical products industry expanded. The presence of significant amounts of, pollutants in industrial waste water can lead to serious risks to the environment and human health have heavy metals like chromium is one example of the future of salmon knock pond environment. Chromium is an essential element in the diet, but high doses of this element is very dangerous. Hence the use of chemical methods as a tool for the removal of metals from waste water pond be used. The aim of this study was to investigate the mineral kaolin adsorbents for the removal of chromium is water. Thus, the effect of different concentrations of absorbent micro amounts of chromium absorption and variable temperature, pH and electrolytes were studied. During the investigation of spectroscopic instrument (Varian) UV-VIS are used. Comparison of the absorption mechanism of chromium adsorption by the adsorbent with nano-absorbent kaolin kaolin was investigated. According to the studies done in the same conditions of temperature, pH and shaking rate of chromium absorption by nano kaolin kaolin is much more attractive. Therefore, its use as an adsorbent abundant, cheap, accessible, efficient and effective is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Chromium is an essential trace mineral for carbohydrate and lipid metabolism, which is currently prescribed to control diabetes mellitus. Results of previous systematic reviews and meta-analyses of chromium supplementation and metabolic profiles in diabetes have been inconsistent. Aim: The objective of this meta-analysis was to assess the effects on metabolic profiles and safety of chromium supplementation in type 2 diabetes mellitus and cholesterol. Methods: Literature searches in PubMed, Scopus and Web of Science were made by use of related terms-keywords and randomized clinical trials during the period of 2000-2014. Results: Thirteen trials fulfilled the inclusion criteria and were included in this systematic review. Total doses of Cr supplementation and brewer's yeast ranged from 42 to 1,000 µg/day, and duration of supplementation ranged from 30 to 120 days. The analysis indicated that there was a significant effect of chromium supplementation in diabetics on fasting plasma glucose with a weighted average effect size of -29.26 mg/dL, p = 0.01, CI 95% = -52.4 to -6.09; and on total cholesterol with a weighted average effect size of -6.7 mg/dL, p = 0.01, CI 95% = -11.88 to -1.53. Conclusions: The available evidence suggests favourable effects of chromium supplementation on glycaemic control in patients with diabetes. Chromium supplementation may additionally improve total cholesterol levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this paper is to study the activities of ceria–zirconia and copper/ceria–zirconia catalysts, comparing with a commercial platinum/alumina catalyst, for soot combustion reaction under different gas atmospheres and loose contact mode (simulating diesel exhaust conditions), in order to analyse the kinetics and to deduce mechanistic implications. Activity tests were performed under isothermal and TPR conditions. The NO oxidation to NO2 was studied as well. It was checked that mass transfer limitations were not influencing the rate measurements. Global activation energies for the catalysed and non-catalysed soot combustion were calculated and properly discussed. The results reveal that ceria-based catalysts greatly enhance their activities under NOx/O2 between 425 °C and 450 °C, due to the “active oxygen”-assisted soot combustion. Remarkably, copper/ceria–zirconia shows a slightly higher soot combustion rate than the Pt-based catalyst (under NOx/O2, at 450 °C).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Back-pressure on a diesel engine equipped with an aftertreatment system is a function of the pressure drop across the individual components of the aftertreatment system, typically, a diesel oxidation catalyst (DOC), catalyzed particulate filter (CPF) and selective catalytic reduction (SCR) catalyst. Pressure drop across the CPF is a function of the mass flow rate and the temperature of the exhaust flowing through it as well as the mass of particulate matter (PM) retained in the substrate wall and the cake layer that forms on the substrate wall. Therefore, in order to control the back-pressure on the engine at low levels and to minimize the fuel consumption, it is important to control the PM mass retained in the CPF. Chemical reactions involving the oxidation of PM under passive oxidation and active regeneration conditions can be utilized with computer numerical models in the engine control unit (ECU) to control the pressure drop across the CPF. Hence, understanding and predicting the filtration and oxidation of PM in the CPF and the effect of these processes on the pressure drop across the CPF are necessary for developing control strategies for the aftertreatment system to reduce back-pressure on the engine and in turn fuel consumption particularly from active regeneration. Numerical modeling of CPF's has been proven to reduce development time and the cost of aftertreatment systems used in production as well as to facilitate understanding of the internal processes occurring during different operating conditions that the particulate filter is subjected to. A numerical model of the CPF was developed in this research work which was calibrated to data from passive oxidation and active regeneration experiments in order to determine the kinetic parameters for oxidation of PM and nitrogen oxides along with the model filtration parameters. The research results include the comparison between the model and the experimental data for pressure drop, PM mass retained, filtration efficiencies, CPF outlet gas temperatures and species (NO2) concentrations out of the CPF. Comparisons of PM oxidation reaction rates obtained from the model calibration to the data from the experiments for ULSD, 10 and 20% biodiesel-blended fuels are presented.