1000 resultados para CENTER-DOT
Resumo:
A flow injection spectrophotometric system is proposed for phosphite determination in fertilizers by the molybdenum blue method after the processing of each sample two times on-line without and with an oxidizing step. The flow system was designed to add sulfuric acid or permanganate solutions alternately into the system by simply displacing the injector-commutator from one resting position to another, allowing the determination of phosphate and total phosphate, respectively. The concentration of phosphite is obtained then by difference between the two measurents. The influence of flow rates, sample volume, and dimension of flow line connecting the injector-commutator to the main analytical channel was evaluated. The proposed method was applied to phosphite determination in commercial liquid fertilizers. Results obtained with the proposed FIA system were not statistically different from those obtained by titrimetry at the 95% confidence level. In addition, recoveries within 94 and 100% of spiked fertilizers were found. The relative standard deviation (n = 12) related to the phosphite-converted-phosphate peak alone was <= 3.5% for 800 mg L-1 P (phoshite) solution. Precision due to the differences of total phosphate and phosphate was 1.1% for 10 mg L-1 P (phosphate) + 3000 mg L-1 P (phosphite) solution. The sampling rate was calculated as 15 determinations per hour, and the reagent consumption was about 6.3 mg of KMnO4, 200 mg of (NH4)(6)Mo7O24 center dot 4H(2)O, and 40 mg of ascorbic acid per measurement.
Resumo:
The influence of yttrium oxide, Y2O3, on the microstructure development of the SnO(2)center dot Co(3)O(4)center dot Nb2O5 typical varistor system was studied with scanning (SEM) and transmission (TEM) electron microscopies. The different phases present in the studied samples were characterized through XRD, EDS and selected area diffraction patterns (SAD). Particles of Co2SnO4 were observed with TEM in every sample, whereas clusters of the pyrochlore phase T2Sn2O7 were observed with SEM in samples with 0.05, 0.10 and 0.25 mol% of Y2O3. The higher non-linearity (a = 16) was achieved with the addition of 0.05 mol% of Y2O3. The influence of the secondary phases on the electrical properties is also addressed in this work. (c) 2005 Published by Elsevier B.V.
Resumo:
A new trinuclear platinum(II) complex with cysteine of composition [Pt(C3H6NO2S)Cl](3)center dot(C2H6SO)(3) was obtained and structurally characterized by X-ray diffraction and infrared analysis. The compound crystallizes in the trigonal system, space group R3, and is described in a hexagonal cell with a=17.739(1), c=9.531(1) and Z=3. Cysteine is coordinated to Pt(II) through the nitrogen and sulphur atoms. Each cysteine sulphur bridges between two metal atoms. A square planar coordination sphere of platinum is completed by a chlorine atom. The complex is soluble in dimethyl sulfoxide.
Resumo:
Flotation has been widely used in studies of recent foraminifera in order to concentrate tests and save time during picking. In this paper, four flotation agents with different densities were compared: (1) trichloroethylene, TCE (C2HCl3), with a density of 1.46 g mL(-1); (2) sodium nitrate/sodium thiosulfate solution, SNT (NaNO3 + Na2O3S2 center dot 5H(2)O), with a density of 1.46 g mL(-1); (3) zinc chloride Solution, ZC (ZHCl(2)), with a density of 1.70 g mL(-1); and (4) sodium polytungstate solution, SPT (3Na(2)WO(4) center dot 9WO(3) center dot 5H(2)O), with a density of 2.50 g mL(-1). Comparison was carried out by means of qualitative and quantitative data. Results showed that ZC and SPT were the best flotation agents, recovering 91% and 96% of the total tests, respectively, whereas TCE and SNT recovered 59.1% and 72.8%, respectively. Both quantitative and qualitative results significantly improved with a higher density of the flotation liquid. Therefore, substitution of TCE with ZC or SPT solutions is strongly encouraged, because they are, additionally, less harmful to health and the environment. ZC is the most cost-effective, since its results were not significantly different from those of the SPT treatment. Carbon tetrachloride (CCl4) was not considered in this comparative study, because it has been banned in many countries and it is highly harmful to health and the environment.
Resumo:
A combined experimental and theoretical study was conducted to analyze the photoluminescence (PL) properties of ordered and disordered CaWO4 (CW) and CaMoO4 (CM) powders. Two mechanisms were found to be responsible for photoluminescence emission in CW and CM powders. The first one, in the disordered powders, was caused by oxygen complex vacancies [MO3 center dot V-O(x)], [MO3 center dot V-O(center dot)] and [MO3 center dot V-O(center dot center dot)], where M=W or Mo, which leads to additional levels in the band gap. The second mechanism, in ordered powders, was caused by an intrinsic slight distortion of the [WO4] or [MoO4] tetrahedral in the short range. (c) 2007 American Institute of Physics.
Resumo:
Nanocrystallized boehmite gamma-AlOOH center dot nH(2)O had been synthesized by spray-drying (SD) of a solution of aluminium tri-sec-butoxide peptized by nitric acid. The sub-micronic spherical particles obtained had an average diameter of 500 nm and were built of 100 nm or less platelet-like sub-particles. The average crystallite size calculated from XRD was 1.6 nm following the b axis (i.e. one unit cell) and 3-4 nm perpendicular to b. As a result of the nanometric sizes of crystallites, there was a large surface free for water adsorption and it was found to be n = 1.18 +/- 0.24H(2)O per AlOOH. The SD spheres spontaneously dispersed in water at room temperature and formed stable-over months-suspensions with nanometre-size particles (25-85 nm). Luminescent europium-doped nanocrystallized boehmites AlOOH: Eu (Al0.98Eu0.02OOH center dot nH(2)O) were synthesized the same way by SD and demonstrated the same crystallization properties and morphologies as the undoped powders. It is inferred from the Eu3+ luminescence spectroscopy that partly hydrated europium species are immobilized on the boehmite nanocrystals where they are directly bonded to alpha(OH) groups of the AlOOH surface. The europium coordination is schematically written [Eu3+(OH)(alpha)(H2O)(7-alpha/2)]. The europium-doped boehmite from SD spontaneously dispersed in water: the luminescence spectroscopy proves that most of the Eu3+ ions were detached from the NPs during water dispersion. The AlOOH: Eu nanoparticles were modified by the amine acid asparagine (ASN). The modification aimed to render the NPs compatible for further bio-functionalization. After surface modification, the NPs easily dispersed in water; the luminescence spectra after dispersion prove that the Eu3+ ions were held at the boehmite surface.
Resumo:
This paper aims to describe the synthesis of the semi-crystalline and crystalline powder of lanthanum doped with zirconium titanate (65/35), LZT through Pechini method. The analysis done by Raman demonstrated that semi-crystalline phase at 550 degrees C and crystalline phase after 600 degrees C were formed. The XRD pattern shows the ZrTiO4 phase formation demonstrating that La substitutions into the lattice take place. The calcined powder at different temperatures shows a semi-crystalline phase presenting photoluminescence effect when processed at low temperatures. From 300 to 400 degrees C a broadband is observed at 563 nm and 568 nm, respectively. Defects creation such as: Zr3+ center dot Vo(center dot center dot) and Ti3+ - V-O(center dot center dot), Zr and Ti replaced by La with vacancy formation, impurities and imperfections contributed to the photoluminescence effect. However, the main emission is due to a reverse Ti4+ -> O2- or/and Zr4+ -> O2- transition that occur within a regular titanate or zirconate eight-fold coordination [BO8-delta], B = Zr4+, Ti4+. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Photoluminescence (PL) behavior of SrBi2Nb2O9 (SBN) powders was explained by means of beta-Bi2O3 phase on the SBN lattice. Oxygen vacancies and recombination of electrons holes in the valence band lead to the formation of [NbO5 center dot V-O(x)], [NbO5 center dot V-O(center dot)] and [NbO5 center dot V-O(center dot center dot)] complex clusters which are the main reason for the PL at room temperature. X-ray diffraction and Fourier transform Raman spectroscopy were used as tools to investigate the structural changes in SBN lattice allowing to correlate [NbO5 center dot V-O(center dot)]/[NbO6](') ratio with the evolution of the visible PL emission in the SBN powders. (c) 2007 American Institute of Physics.
Resumo:
The influence of aluminium on the development of the microstructure and on the electrical behaviour of the SnO2 center dot Co3O4 center dot Nb2O5 typical varistor system was studied. Two sources of Al were used, alumina (Al2O3) and boehmite (AlO(OH)). The microstructural features were characterised with scanning (SEM) and transmission (TEM) electron microscopies. The different phases present in the studied samples were also studied with XRD, EDS and electron diffraction patterns of selected areas (SAED). Particles containing Sri, Co, Al, and O were unveiled with TEM. Impedance spectroscopy measurements and current density versus electric field characteristics revealed superior electrical properties for samples with AlO(OH). The higher non-linearity (alpha = 19) was achieved with the addition of 0.1% mol of boehmite. The influence of the secondary phases on the electrical properties is also addressed in this work.
Resumo:
Solid-state Ln(Bz)(3)center dot H(2)O compounds where Ln stands for trivalent yttrium or lanthanides and Bz is benzoate have been synthesized. Simultaneous thermogravimetry-differential thermal analysis (TG-DTA), X-ray powder diffractometry, infrared spectroscopy and chemical analysis were used to characterize and to study the thermal behaviour of these compounds. The results led to information about the composition, dehydration, thermal stability and thermal decomposition of the isolated compounds.