992 resultados para C-60 FULLERENES
Resumo:
Sugarcane bagasse hemicellulose was isolated in a one-step chemical extraction using hydrogen peroxide in alkaline media. The polysaccharide containing 80.9% xylose and small amounts of L-arabinose, 4-O-methyl-D-glucuronic acid and glucose, was hydrolyzed by crude enzymatic extracts from Thermoascus aurantiacus at 50 degrees C. Conditions of enzymatic hydrolysis leading to the best yields of xylose and xylooligosaccharides (DP 2-5) were investigated using substrate concentration in the range 0.5-3.5% (w/v), enzyme load 40-80 U/g of the substrate, and reaction time from 3 to 96 h, applying a 22 factorial design. The maximum conversion to xylooligosaccharides (37.1%) was obtained with 2.6% of substrate and xylanase load of 60 U/g. The predicted maximum yield of xylobiose by a polynomial model was 41.6%. Crude enzymatic extract of T. aurantiacus generate from sugarcane bagasse hemicellulose 39% of xylose, 59% of xylobiose, and 2% of other xylooligosaccharides.
Resumo:
Milkfat (MF)/soybean oil (SBO) blends ranging from 50% to 100% of milkfat (w/w) were enzymatically interesterified with a sn-1,3 specific lipase from Rhizopus oryzae immobilized on polysiloxane-polyvinyl alcohol matrix, in a solvent free medium. Interesterification progress was monitored by following the changes in the relative proportions of 50-carbon triacylglycerols (TAGS) to 44-carbon TAGs (50/44 ratio) in the reaction. The starting materials and products were also analyzed in terms of consistency measured in a texturometer. All reactions gave interesterified (IE) products with lower consistency than non-interesterified (NIE) MF:SBO blends and interesterification degree varied from 0.54 to 2.60 in 48 h reaction. The highest interesterification degree was achieved for 65:35 MF:SBO blends, which gave 76% reduction in the consistency. These results showed the potential of the immobilized lipase to change the TAGs profile of the MF:SBO blend allowing to obtain cold-spreadable milkfat. (C) 2010 Elsevier B.V. All rights reserved.