999 resultados para Blake Plateau, Atlantic Ocean
Resumo:
High-resolution analyses of sediments at equatorial Atlantic Sites 662, 663, and 664 define the accumulation rates of biogenically produced CaC03 and opal and of eolian dust from North Africa over the last 3.7 m.y. The mean flux of opal increased abruptly by 60%-70% near 2.5 Ma (2.65 to 2.3 Ma), reflecting pulses of increased opal productivity along the equator due mainly to increased upwelling. The mean winter-plume dust influx from Sahelian and Saharan Africa also increased at this time by between 35% and 75%, following smaller increases earlier in the late Pliocene. The increased opal flux implies a stronger zonal component of the southern trade winds in Southern Hemisphere winter. Consistent with this wind configuration, the stronger dust flux suggests a weaker southwesterly monsoonal flow into Africa in Northern Hemisphere summer, thus increasing Sahelian aridity and winter-plume dust fluxes. Dust fluxes to the equator may possibly have also been enhanced by stronger Northern Hemisphere winter trade winds and a more southerly position of the Intertropical Convergence Zone over Africa. These late Pliocene biogenic and terrigenous flux changes coincided with the appearance of Northern Hemisphere ice sheets, implying an ultimate causal link. The immediate control on changes in tropical circulation may, however, have been changes in the Atlantic sector of the Southern Ocean. A steady background trend of increasing winter-plume dust flux occurred from the late Pliocene until the middle Pleistocene. This may reflect a progressive, tectonically induced aridification of northern and eastern Africa because of the gradual uplift of the Tibetan Plateau.
Resumo:
Strontium isotope (87Sr/86Sr) ages have been established for Oligocene samples of Leg 119 Site 744, Leg 120 Sites 747 and 748, and Leg 121 Sites 756 and 757. Ages were determined using the strontium isotope age equation of Miller et al. (1988) and preliminary correlations have been made with available nannofossil biostratigraphy. The strontium isotope ages calculated here augment biostratigraphy, which for the Oligocene is characterized by long biozones, and provide additional detail where the paleomagnetic record is not clear (Sites 756 and 757). Results from the lower latitude Ninetyeast Ridge sites where standard calcareous nannofossil datums are present are compared to those of the higher latitude Kerguelen Plateau sites in order to examine biostratigraphic events across latitude in the Indian Ocean. The 87Sr/86Sr determined ages are used here as a tool for correlation.
Resumo:
Sr contents in phosphorites on shelves of the Southwest Africa, and of Chile and Peru increase with degree of their lithification, from 0.05 to 0.28% and from 0.13 to 0.16% respectively. Phosphorites from Pacific submarine seamounts have the average Sr content 0.11%, and bone phosphate from Pacific floor 0.13%. Shelf phosphorites are characterized by high correlation coefficients between Sr and P2O5 (R = +0.82) and constant Sr/P2O5 ratio (0.0084). In phosphorites from submarine sea-mounts and in bones from the ocean floor Sr/P2O5 ratio is only a little higher than a half of that in shelf phosphorites. This indicates specific and different genesis of phosphorites from submarine mountains. Ba content in recent phosphorites from the shelf of the Southwest Africa changes with increasing degree of lithification. At first their Ba contents rise from 0.031 to 0.188%, then they diminish to 0.016%, and thereafter again increase to 0.070%. This is due to successive predominance of one of the following processes going in different directions: co-precipitation with phosphate gels or formation of true separate Ba phase, loss of phosphate in crystallization and "self-purification" of concentrations, and surface adsorption. In Peru-Chile shelf phosphorites the average Ba content is 0.017%, in phosphorites from Pacific seamounts 0.192%, and in fossilized bones 0.010%.
Resumo:
The mid-Piacenzian (MP) warm period (3.264-3.025 Ma) has been identified as the most recent time in geologic history during which mean global surface temperatures were considerably warmer than today for a sustained period. This interval has therefore been proposed as a potential (albeit imperfect) analog for future climate change and as such, has received much scientific attention over the past two decades. Central to this research effort is the Pliocene Research, Interpretation, and Synoptic Mapping (PRISM) project, an iterative paleoenvironmental reconstruction of the MP focused on increasing our understanding of warm-period climate forcings, dynamics, and feedbacks by providing three-dimensional data sets for general circulation models. A mainstay of the PRISM project has been the development of a global sea surface temperature (SST) data set based primarily upon quantitative analyses of planktic foraminifer assemblages, supplemented with geochemical SST estimates wherever possible. In order to improve spatial coverage of the PRISM faunal data set in the low and mid-latitude North Atlantic, this study provides a description of the MP planktic foraminifer assemblage from five Ocean Drilling Program sites (951, 958, 1006, 1062, and 1063) in the subtropical gyre, a region critical to Atlantic Ocean circulation and tropical heat advection. Assemblages from each core provide evidence for a temperature- and circulation-driven 5-10° northward displacement of MP faunal provinces, as well as regional shifts in planktic foraminifer populations linked to species ecology and interactions. General biogeographic trends also indicate that, relative to modern conditions, gyre circulation was stronger (particularly the Gulf Stream, North Atlantic Current, and North Equatorial Current) and meridionally broader. A comparison of mid-Piacenzian and modern North Atlantic planktic foraminifer assemblages suggests that low latitude western boundary currents were less than 1 °C warmer while eastern boundary currents were ~1-2 °C warmer, supporting the hypothesis of enhanced northward heat advection along western boundary currents and warming of high latitude Northeast Atlantic source regions for the Canary Current. These findings are consistent with a model of reduced meridional SST gradients, with little-to-no low latitude warming, and more vigorous ocean circulation. Results therefore support the theory that enhanced meridional overturn circulation and associated northward heat advection made an important contribution, in conjunction with elevated atmospheric CO2 concentrations, to the 2-3 °C global surface temperature increase (relative to today) and strong polar amplification of SST warmth during the MP warm period.
Resumo:
Planktonic foraminiferal and nannoplankton stratigraphy of the Pliocene-Quatemary Sediments of the northern half of the Atlantic Ocean from the equator up to the Rockall Plateau and the Norwegian Sea, is considered. Lowlatitude zonations were used for the subdivision of the Pliocene and Quaternary Sediments of different climatic belts, and certain subglobal zonal units were recognized. Variations in the degree of resolution of the zonation in different latitudes were revealed; the resolution of zonal scales based on calcareous plankton diminishes northwards. Changes of taxonomic composition of the zonal foraminifer and nannoplankton assemblages within various latitudinal belts of the Atlantic were analyzed taking into consideration the influence of climatic factors and of local bionomic conditions. Correlation with the magnetostratigraphic time-scale permitted the establishment of the most reliable appearance and disappearance datums (datum planes) of planktonic foraminifer and nannoplankton species. Paleontologic plates demonstrate some guide forms of two groups of calcareous plankton, and a short description of the taxa is given in the text. Major stratigraphic problems of Pliocene and Quaternary marine deposits are discussed. The monograph can be used in different geological investigations by specialists in geology, paleontology, and oceanology.