995 resultados para Biology, Molecular|Biology, Animal Physiology|Health Sciences, Oncology
Resumo:
GLUT4 is a mammalian facilitative glucose transporter that is highly expressed in adipose tissue and striated muscle. In response to insulin, GLUT4 moves from intracellular storage areas to the plasma membrane, thus increasing cellular glucose uptake. While the verification of this 'translocation hypothesis' (Cushman SW. Wardzala LJ. J Biol Chem 1980;255: 4758-4762 and Suzuki K, Kono T. Proc Natl Acad Sci 1980;77: 2542-2545) has increased our understanding of insulin-regulated glucose transport, a number of fundamental questions remain unanswered. Where is GLUT4 stored within the basal cell? How does GLUT4 move to the cell surface and what mechanism does insulin employ to accelerate this process) Ultimately we require a convergence of trafficking studies with research in signal transduction. However, despite more than 30 years of intensive research we have still not reached this point. The problem is complex, involving at least two separate signal transduction pathways which feed into what appears to be a very dynamic sorting process. Below we discuss some of these complexities and highlight new data that are bringing us closer to the resolution of these questions.
Resumo:
The contribution of the UV component of sunlight to the development of skin cancer is widely acknowledged, although the molecular mechanisms that are disrupted by UV radiation (UVR) resulting in the loss of normal growth controls of the epidermal stem cell keratinocytes and melanocytes is still poorly understood. alpha-Melanocyte stimulating hormone (alpha-MSH), acting via its receptor MC1, has a key role in skin pigmentation and the melanizing response after exposure to UVR. The cell cycle inhibitor p16/CDKN2A also appears to have an important function in a cell cycle checkpoint response in skin after exposure to UVR. Both of these genes have been identified as risk factors in skin cancer, MC1R variants are associated with increased risk to both melanoma and nonmelanoma skin cancers, and p16/CDKN2A with increased risk of melanoma. Here we demonstrate that the increased expression of p16 after exposure to sub-erythemal doses of UVR is potentiated by alpha-MSH, a ligand for MC1R, and this effect is mimicked by cAMP, the intracellular mediator of alpha-MSH signaling via the MC1 receptor. This link between p16 and MC1R may provide a molecular basis for the increased skin cancer risk associated with MC1R polymorphisms.
Resumo:
The basic biology of the fibroblast growth factor (FGF) receptors and their splice variants is first reviewed, followed by a review of the known roles of FGFs in the inner ear. They include induction of the otocyst by FGF19, followed by FGF3 in further development of the otocyst. In later development, FGF3 or FGF10 acting on FGF receptor 2b is likely to be involved in development of the walls of the cochlear spaces, while FGF receptor 3 is involved in differentiation of the pillar cells of the organ of Corti. FGF1 and FGF2 act as trophic factors for the developing cochlear nerve fibres. Copyright (C) 2002 S. Karger AG, Basel.
Resumo:
Chest clapping, vibration, and shaking were studied in 10 physiotherapists who applied these techniques on an anesthetized animal model. Hemodynamic variables (such as heart rate, blood pressure, pulmonary artery pressure, and right atrial pressure) were measured during the application of these techniques to verify claims of adverse events. In addition, expired tidal volume and peak expiratory flow rate were measured to ascertain effects of these techniques. Physiotherapists in this study applied chest clapping at a rate of 6.2 +/- 0.9 Hz, vibration at 10.5 +/- 2.3 Hz, and shaking at 6.2 +/- 2.3 Hz. With the use of these rates, esophageal pressure swings of 8.8 +/- 5.0, 0.7 +/- 0.3, and 1.4 +/- 0.7 mmHg resulted from clapping, vibration, and shaking respectively. Variability in rates and forces generated by these techniques was 80% of variance in shaking force (P = 0.003). Application of these techniques by physiotherapists was found to have no significant effects on hemodynamic and most ventilatory variables in this study. From this study, we conclude that chest clapping, vibration, and shaking 1) can be consistently performed by physiotherapists; 2) are significantly related to physiotherapists' characteristics, particularly clinical experience; and 3) caused no significant hemodynamic effects.