994 resultados para Benign bone tumor
Resumo:
Tumor-infiltrating macrophages typically promote angiogenesis while suppressing antitumoral T cell responses. In this issue of Cancer Cell, Klug and colleagues report that clinically-feasible, low-dose irradiation redirects macrophage differentiation from a tumor-promoting/immunosuppressive state to one that enables cytotoxic T cells to infiltrate tumors and kill cancer cells, rendering immunotherapy successful in mice.
Resumo:
B cell activating factor of the tumor necrosis factor (TNF) family (BAFF) and a proliferation-inducing ligand (APRIL) are closely related ligands within the TNF superfamily that play important roles in B lymphocyte biology. Both ligands share two receptors--transmembrane activator and calcium signal--modulating cyclophilin ligand interactor (TACI) and B cell maturation antigen (BCMA)--that are predominantly expressed on B cells. In addition, BAFF specifically binds BAFF receptor, whereas the nature of a postulated APRIL-specific receptor remains elusive. We show that the TNF homology domain of APRIL binds BCMA and TACI, whereas a basic amino acid sequence (QKQKKQ) close to the NH2 terminus of the mature protein is required for binding to the APRIL-specific "receptor." This interactor was identified as negatively charged sulfated glycosaminoglycan side chains of proteoglycans. Although T cell lines bound little APRIL, the ectopic expression of glycosaminoglycan-rich syndecans or glypicans conferred on these cells a high binding capacity that was completely dependent on APRIL's basic sequence. Moreover, syndecan-1-positive plasma cells and proteoglycan-rich nonhematopoietic cells displayed high specific, heparin-sensitive binding to APRIL. Inhibition of BAFF and APRIL, but not BAFF alone, prevented the survival and/or the migration of newly formed plasma cells to the bone marrow. In addition, costimulation of B cell proliferation by APRIL was only effective upon APRIL oligomerization. Therefore, we propose a model whereby APRIL binding to the extracellular matrix or to proteoglycan-positive cells induces APRIL oligomerization, which is the prerequisite for the triggering of TACI- and/or BCMA-mediated activation, migration, or survival signals.
Resumo:
BACKGROUND: Glioblastoma, the most common adult primary malignant brain tumor, confers poor prognosis (median survival of 15 months) notwithstanding aggressive treatment. Combination chemotherapy including carmustine (BCNU) or temozolomide (TMZ) with the MGMT inhibitor O6-benzylguanine (O6BG) has been used, but has been associated with dose-limiting hematopoietic toxicity. OBJECTIVE: To assess safety and efficacy of a retroviral vector encoding the O6BG-resistant MGMTP140K gene for transduction and autologous transplantation of hematopoietic stem cells (HSCs) in MGMT unmethylated, newly diagnosed glioblastoma patients in an attempt to chemoprotect bone marrowduring combination O6BG/TMZ therapy. METHODS: Three patients have been enrolled in the first cohort. Patients underwent standard radiation therapy without TMZ followed by G-CSF mobilization, apheresis, and conditioning with 600 mg/m2 BCNU prior to infusion of gene-modified cells. Posttransplant, patients were treated with 28-day cycles of single doseTMZ (472 mg/m2) with 48-hour intravenous O6BG (120 mg/m2 bolus, then 30 mg/m2/d). RESULTS: The BCNU dose was nonmyeloablative with ANC ,500/mL for ≤3 d and nadir thrombocytopenia of 28,000/mL. Gene marking in pre-infusion colony forming units (CFUs) was 70.6%, 79.0%, and 74.0% in Patients 1, 2, and 3, respectively, by CFU-PCR. Following engraftment, gene marking in white blood cells and sorted granulocytes ranged between 0.37-0.84 and 0.33-0.83 provirus copies, respectively, by real-time PCR. Posttransplant gene marking in CFUs from CD34-selected cells ranged from 28.5% to 47.4%. Patients have received 4, 3, and 2 cycles of O6BG/TMZ, respectively, with evidence for selection of gene-modified cells. One patient has received a single dose-escalated cycle at 590 mg/m2 TMZ. No additional extra-hematopoietic toxicity has been observed thus far and all three patients exhibit stable disease at 7-8 months since diagnosis CONCLUSIONS: We believe that these data demonstrate the feasibility of achieving significant engraftment of MGMTP140K-modified cells with a well-tolerated dose of BCNU. Further follow-up will determine whether this approach will allow for further dose escalation of TMZ and improved survival.
Resumo:
The trabecular bone score (TBS) is a gray-level textural metric that can be extracted from the two-dimensional lumbar spine dual-energy X-ray absorptiometry (DXA) image. TBS is related to bone microarchitecture and provides skeletal information that is not captured from the standard bone mineral density (BMD) measurement. Based on experimental variograms of the projected DXA image, TBS has the potential to discern differences between DXA scans that show similar BMD measurements. An elevated TBS value correlates with better skeletal microstructure; a low TBS value correlates with weaker skeletal microstructure. Lumbar spine TBS has been evaluated in cross-sectional and longitudinal studies. The following conclusions are based upon publications reviewed in this article: 1) TBS gives lower values in postmenopausal women and in men with previous fragility fractures than their nonfractured counterparts; 2) TBS is complementary to data available by lumbar spine DXA measurements; 3) TBS results are lower in women who have sustained a fragility fracture but in whom DXA does not indicate osteoporosis or even osteopenia; 4) TBS predicts fracture risk as well as lumbar spine BMD measurements in postmenopausal women; 5) efficacious therapies for osteoporosis differ in the extent to which they influence the TBS; 6) TBS is associated with fracture risk in individuals with conditions related to reduced bone mass or bone quality. Based on these data, lumbar spine TBS holds promise as an emerging technology that could well become a valuable clinical tool in the diagnosis of osteoporosis and in fracture risk assessment. © 2014 American Society for Bone and Mineral Research.