1000 resultados para Be
Resumo:
Forensic taphonomy involves the use of decomposition to estimate postmortem interval (PMI) or locate clandestine graves. Yet, cadaver decomposition remains poorly understood, particularly following burial in soil. Presently, we do not know how most edaphic and environmental parameters, including soil moisture, influence the breakdown of cadavers following burial and alter the processes that are used to estimate PMI and locate clandestine graves. To address this, we buried juvenile rat (Rattus rattus) cadavers (∼18 g wet weight) in three contrasting soils from tropical savanna ecosystems located in Pallarenda (sand), Wambiana (medium clay), or Yabulu (loamy sand), Queensland, Australia. These soils were sieved (2 mm), weighed (500 g dry weight), calibrated to a matric potential of -0.01 megapascals (MPa), -0.05 MPa, or -0.3 MPa (wettest to driest) and incubated at 22 °C. Measurements of cadaver decomposition included cadaver mass loss, carbon dioxide-carbon (CO2-C) evolution, microbial biomass carbon (MBC), protease activity, phosphodiesterase activity, ninhydrin-reactive nitrogen (NRN) and soil pH. Cadaver burial resulted in a significant increase in CO2-C evolution, MBC, enzyme activities, NRN and soil pH. Cadaver decomposition in loamy sand and sandy soil was greater at lower matric potentials (wetter soil). However, optimal matric potential for cadaver decomposition in medium clay was exceeded, which resulted in a slower rate of cadaver decomposition in the wettest soil. Slower cadaver decomposition was also observed at high matric potential (-0.3 MPa). Furthermore, wet sandy soil was associated with greater cadaver decomposition than wet fine-textured soil. We conclude that gravesoil moisture content can modify the relationship between temperature and cadaver decomposition and that soil microorganisms can play a significant role in cadaver breakdown. We also conclude that soil NRN is a more reliable indicator of gravesoil than soil pH.
Resumo:
We report a longitudinal comprehension study of (long) passive constructions in two native-Spanish child groups differing by age of initial exposure to L2 English (young group: 3;0-4;0 years; older group: 6;0-7;0 years); where amount of input, L2 exposure environment, and socio-economic status are controlled. Data from a forced-choice task show that both groups comprehend active sentences, not passives, initially (after 3.6 years of exposure). One year later, both groups improve, but only the older group reaches ceiling on both actives and passives. Two years from initial testing, the younger group catches up. Input alone cannot explain why the younger group takes 5 years to accomplish what the older group does in 4. We claim that some properties take longer to acquire at certain ages because language development is partially constrained by general cognitive and linguistic development (e.g. de Villiers, 2007; Long & Rothman, 2014; Paradis, 2008, 2010, 2011; Tsimpli, 2014).
Resumo:
Individual-based models (IBMs) can simulate the actions of individual animals as they interact with one another and the landscape in which they live. When used in spatially-explicit landscapes IBMs can show how populations change over time in response to management actions. For instance, IBMs are being used to design strategies of conservation and of the exploitation of fisheries, and for assessing the effects on populations of major construction projects and of novel agricultural chemicals. In such real world contexts, it becomes especially important to build IBMs in a principled fashion, and to approach calibration and evaluation systematically. We argue that insights from physiological and behavioural ecology offer a recipe for building realistic models, and that Approximate Bayesian Computation (ABC) is a promising technique for the calibration and evaluation of IBMs. IBMs are constructed primarily from knowledge about individuals. In ecological applications the relevant knowledge is found in physiological and behavioural ecology, and we approach these from an evolutionary perspective by taking into account how physiological and behavioural processes contribute to life histories, and how those life histories evolve. Evolutionary life history theory shows that, other things being equal, organisms should grow to sexual maturity as fast as possible, and then reproduce as fast as possible, while minimising per capita death rate. Physiological and behavioural ecology are largely built on these principles together with the laws of conservation of matter and energy. To complete construction of an IBM information is also needed on the effects of competitors, conspecifics and food scarcity; the maximum rates of ingestion, growth and reproduction, and life-history parameters. Using this knowledge about physiological and behavioural processes provides a principled way to build IBMs, but model parameters vary between species and are often difficult to measure. A common solution is to manually compare model outputs with observations from real landscapes and so to obtain parameters which produce acceptable fits of model to data. However, this procedure can be convoluted and lead to over-calibrated and thus inflexible models. Many formal statistical techniques are unsuitable for use with IBMs, but we argue that ABC offers a potential way forward. It can be used to calibrate and compare complex stochastic models and to assess the uncertainty in their predictions. We describe methods used to implement ABC in an accessible way and illustrate them with examples and discussion of recent studies. Although much progress has been made, theoretical issues remain, and some of these are outlined and discussed.
Resumo:
The transcription factor REST is a key suppressor of neuronal genes in non-neuronal tissues. REST has been shown to suppress pro-neuronal microRNAs in neural progenitors indicating that REST-mediated neurogenic suppression may act in part via microRNAs. We used neural differentiation of Rest-null mouse ESC to identify dozens of microRNAs regulated by REST during neural development. One of the identified microRNAs, miR-375, was upregulated during human spinal motor neuron development. We found that miR-375 facilitates spinal motor neurogenesis by targeting the cyclin kinase CCND2 and the transcription factor PAX6. Additionally, miR-375 inhibits the tumor suppressor p53 and protects neurons from apoptosis in response to DNA damage. Interestingly, motor neurons derived from a spinal muscular atrophy patient displayed depressed miR-375 expression and elevated p53 protein levels. Importantly, SMA motor neurons were significantly more susceptible to DNA damage induced apoptosis suggesting that miR-375 may play a protective role in motor neurons.
Resumo:
Schools have a legal duty to make reasonable adjustments for disabled pupils who experience barriers to learning. Inclusive approaches to data collection ensure that the needs of all children who are struggling are not overlooked. However, it is important that the methods promote sustained reflection on the part of all children, do not inadvertently accentuate differences between pupils, and do not allow individual needs to go unrecognized. This paper examines more closely the processes involved in using Nominal Group Technique to collect the views of children with and without a disability on the difficulties experienced in school. Data were collected on the process as well as the outcomes of using this technique to examine how pupil views are transformed from the individual to the collective, a process that involves making the private, public. Contrasts are drawn with questionnaire data, another method of data collection favoured by teachers. Although more time-efficient this can produce unclear and cursory responses. The views that surface from pupils need also to be seen within the context of the ways in which schools customize the data collection process and the ways in which the format and organization of the activity impact on the responses and responsiveness of the pupils.
Resumo:
Public and policy discourse about the content of history curricula is frequently contested, but the voice of history teachers is often absent from such debate. Drawing on a large scale on-line survey of history teachers in England, this paper explores their responses to major curriculum reforms proposed by the Coalition government in February 2013. In particular it examines teachers' responses to government plans to prescribe a list of topics, events and individuals to be taught chronologically that all students would be expected to study. Nearly 550 teachers responded to the survey, and more than two-thirds of them provided additional written comments on the curriculum proposals. This paper examines these comments, with reference to a range of curriculum models. The study reveals a deep antagonism towards the proposals for various reasons, including concerns about the extent and nature of the substantive content proposed and the way in which it should be sequenced. Analysis of these reactions provides an illuminating insight into history teachers’ perspectives. While the rationales that underpin their thinking seem to have connections to a variety of different theoretical models, the analysis suggests that more attention could usefully be devoted to the idea of developing frameworks of reference.