999 resultados para BETA-PROPELLER
Resumo:
The self-assembly in aqueous solution of hybrid block copolymers consisting of amphiphilic β-strand peptide sequences flanked by one or two PEG chains was investigated by means of circular dichroism spectroscopy, small-angle X-ray scattering, and transmission electron microscopy. In comparison with the native peptide sequence, it was found that the peptide secondary structure was stabilized against pH variation in the di-and tri-block copolymers with PEG. Small-angle X-ray scattering indicated the presence of fibrillar structures, the dimensions of which are comparable to the estimated width of a β-strand (with terminal PEG chains in the case of the copolymers). Transmission electron microscopy on selectively stained and dried specimens shows directly the presence of fibrils. It is proposed that these fibrils result from the hierarchical self-assembly of peptide β-strands into helical tapes, which then stack into fibrils.
Resumo:
Single crystal X-ray diffraction studies show that the three designed tripeptides Boc-Leu-Aib-m-NA-NO2 (I), Boc-Phe-Aib-m-NA-NO2 (II) and Boc-Pro-Aib-m-ABA-OMe (III) (Aib, -aminoisobutyric acid; m-NA, m-nitroaniline; m-ABA, m-aminobenzoic acid; Boc, t-butyloxycarbonyl) containing aromatic rings in the backbones adopt -turn structures that are self-assembled through intermolecular hydrogen bonds and van der Waals interactions to create layers of -sheets. Solvent-dependent NMR titration and CD studies show that the -turn structures of the peptides also exist in the solution phase. The field emission scanning electron microscopic and transmission electron microscopic images of the peptides in the solid state reveal fibrillar structures of flat morphology that are formed through -sheet mediated self-assembly of the preorganised -turn building blocks.
Resumo:
Ordered nanostructures are observed in the melt and solid state for a series of three peptide/PEG conjugates containing fragments of amyloid beta-peptides. These are conjugated to PEG with (M) over bar (n) = 3 300 g.mol(-1) and a melting temperature T-m = 45-50 degrees C. The morphology at room temperature is examined by AFM and POM. This shows spherulite formation for the weakly fibrillizing KLVFF-PEG sample but fibril formation for FFKLVFF-PEG. The fibrillization tendency of the latter is enhanced by multiple phenylalanine residues. Simultaneous SAXS and WAXS was used to investigate the morphology as a function of temperature. The secondary structure is probed by FTIR.
Resumo:
The gas-phase ozonolysis of beta-pinene was studied in static chamber experiments, using gas chromatography coupled to mass spectrometric and flame ionisation detection to separate and detect products. A range of multifunctional organic acids-including pinic acid, norpinic acid, pinalic-3- acid, pinalic-4-acid, norpinalic acid and OH-pinalic acid-were identified in the condensed phase after derivatisation. Formation yields for these products under systematically varying reaction conditions (by adding different OH radical scavengers and Criegee intermediate scavengers) were investigated and compared with those observed from alpha-pinene ozonolysis, allowing detailed information on product formation mechanisms to be elucidated. In addition, branching ratios for the initial steps of the reaction were inferred from quantitative measurements of primary carbonyl formation. Atmospheric implications of this work are discussed.
Resumo:
We have described here the self-assembling properties of the synthetic tripeptides Boc-Ala(1)-Aib(2) -Val (3)-OMe 1, BocAla(l)-Aib(2)-Ile(3)-OMe 2 and Boc-Ala(l)-Gly(2)-Val(3)-OMe 3 (Aib=alpha-arnino isobutyric acid, beta-Ala=beta-alanine) which have distorted beta-turn conformations in their respective crystals. These turn-forming tripeptides self-assemble to form supramolecular beta-sheet structures through intermolecular hydrogen bonding and other noncovalent interactions. The scanning electron micrographs of these peptides revealed that these compounds form amyloid-like fibrils, the causative factor for many neurodegenerative diseases including Alzheimer's disease, Huntington's disease and Prion-related encephalopathies. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
alpha B-Crystallin is a ubiquitous small heat-shock protein (sHsp) renowned for its chaperone ability to prevent target protein aggregation. It is stress-inducible and its up-regulation is associated with a number of disorders, including those linked to the deposition of misfolded proteins, such as Alzheimer's and Parkinson's diseases. We have characterised the formation of amyloid fibrils by human alpha B-crystallin in detail, and also that of alpha A-crystallin and the disease-related mutant R120G (alpha B-crystallin. We find that the last 12 amino acid residues of the C-terminal region of alpha B-crystallin are predicted from their physico-chemical properties to have a very low propensity to aggregate. H-1 NMR spectroscopy reveals that this hydrophilic C-terminal region is flexible both in its solution state and in amyloid fibrils, where it protrudes from the fibrillar core. We demonstrate, in addition, that the equilibrium between different protofilament assemblies can be manipulated and controlled in vitro to select for particular alpha B-crystallin amyloid morphologies. Overall, this study suggests that there could be a fine balance in vivo between the native functional sHsp state and the formation of amyloid fibrils. (C) 2007 Elsevier Ltd. All rights reserved.
Application of olefin metathesis for the synthesis of constrained beta-amino esters from norbornenes
Resumo:
Synthesis of a number of novel, conformationally rigid beta-amino esters has been achieved via a tandem olefin metathesis reaction. The starting materials are readily accessible from the Diels-Alder adduct between cyclopentadiene and maleic anhydride.
Resumo:
A water-soluble, hydrophilic tripeptide GYE, having sequence identity with the N-terminal segment of amyloid peptides A,beta(9-11), upon self-association exhibits amyloid-like fibrils and significant neurotoxicity towards the Neuro2A cell line. However, the tripeptides GFE and GWE, in which the centrally located tyrosine residue has been replaced by phenylalanine or tryptophan, fail to show amyloidogenic behavior and exhibit little or no neurotoxicity.
Resumo:
Gas-phase rate coefficients for the atmospherically important reactions of NO3, OH and O-3 are predicted for 55 alpha,beta-unsaturated esters and ketones. The rate coefficients were calculated using a correlation described previously [Pfrang, C., King, M.D., C. E. Canosa-Mas, C.E., Wayne, R.P., 2006. Atmospheric Environment 40, 1170-1179]. These rate coefficients were used to extend structure-activity relations for predicting the rate coefficients for the reactions of NO3, OH or O-3 with alkenes to include alpha,beta-unsaturated esters and ketones. Conjugation of an alkene with an alpha,beta-keto or alpha,beta-ester group will reduce the value of a rate coefficient by a factor of similar to 110, similar to 2.5 and similar to 12 for reaction with NO3, OH or O-3, respectively. The actual identity of the alkyl group, R, in -C(O)R or -C(O)OR has only a small influence. An assessment of the reliability of the SAR is given that demonstrates that it is useful for reactions involving NO3 and OH, but less valuable for those of O-3 or peroxy nitrate esters. (c) 2006 Elsevier Ltd. All rights reserved.