999 resultados para Audience community


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Terminal restriction fragment length polymorphism (T-RFLP) analysis is a polymerase chain reaction (PCR)-fingerprinting method that is commonly used for comparative microbial community analysis. The method can be used to analyze communities of bacteria, archaea, fungi, other phylogenetic groups or subgroups, as well as functional genes. The method is rapid, highly reproducible, and often yields a higher number of operational taxonomic units than other, commonly used PCR-fingerprinting methods. Sizing of terminal restriction fragments (T-RFs) can now be done using capillary sequencing technology allowing samples contained in 96- or 384-well plates to be sized in an overnight run. Many multivariate statistical approaches have been used to interpret and compare T-RFLP fingerprints derived from different communities. Detrended correspondence analysis and the additive main effects with multiplicative interaction model are particularly useful for revealing trends in T-RFLP data. Due to biases inherent in the method, linking the size of T-RFs derived from complex communities to existing sequence databases to infer their taxonomic position is not very robust. This approach has been used successfully, however, to identify and follow the dynamics of members within very simple or model communities. The T-RFLP approach has been used successfully to analyze the composition of microbial communities in soil, water, marine, and lacustrine sediments, biofilms, feces, in and on plant tissues, and in the digestive tracts of insects and mammals. The T-RFLP method is a user-friendly molecular approach to microbial community analysis that is adding significant information to studies of microbial populations in many environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To determine the effects of pretreatment on hydrogen production and the hydrogen-producing microbial community, we treated the sludge from the intertidal zone of a bathing beach in Tianjin with four different pretreatment methods, including acid treatment, heat-shock, base treatment as well as freezing and thawing. The results showed that acid pretreatment significantly promoted the hydrogen production by sludge and provided the highest efficiency of hydrogen production among the four methods. The efficiency of the hydrogen production of the acid-pretreated sludge was 0.86 +/- 0.07 mol H-2/mol glucose (mean +/- S.E.), whereas that of the sludge treated with heat-shock, freezing and thawing, base method and control was 0.41 +/- 0.03 mol H-2/mol glucose, 0.17 +/- 0.01 mol H-2/mol glucose, 0.11 +/- 0.01 mol H-2/mol glucose and 0.20 +/- 0.04 mol H-2/mol glucose, respectively. The result of denaturing gradient gel electrophoresis (DGGE) showed that pretreatment methods altered the composition of the microbial community that accounts for hydrogen production. Acid and heat pretreatments were favorable to enrich the dominant hydrogen-producing bacterium, i.e. Clostridium sp., Enterococcus sp. and Bacillus sp., However, besides hydrogen-producing bacteria, much non-hydrogen-producing Lactobacillus sp. was also found in the sludge pretreated with base, freezing and thawing methods. Therefore, based on our results, we concluded that, among the four pretreatment methods using acid, heat-shock, base or freezing and thawing, acid pretreatment was the most effective method for promoting hydrogen production of microbial community. (C) 2009 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The species composition and abundance of microzooplankton at 10 marine and five coastal stations (Hongdao, Daguhe, Haibohe, Huangdao and Hangxiao) in the Jiaozhou Bay (Qingdao, China) were studied in 2001. The microzooplankton community was found to be dominated by Tintinnopsis beroidea, Tintinnopsis urnula, Tintinnopsis brevicollis and Cvdonellopsis sp. The average abundance of microzooplankton was highly variable among stations. Specifically, the abundance of microzooplankton was higher at inshore stations and lower in the center of the bay (St. 5), bay mouth (St. 9) and outside the bay (St. 10). The highest average annual densities (346 ind./L) was observed at St. 3, while the lowest (55 ind./L) was at St. 10. Two abundance peaks were recorded in May (324 ind./L) and February (300 ind./L). The distribution of microzooplankton in three sampling layers at the 10 stations was relatively homogenous and the abundance decreased slightly as the water depth increased. At coastal stations, the highest average annual density was recorded at Hongdao Station (677 ind./L), followed by Daguhe Station (616 ind./L), Haibohe Station (400 ind./L), Huangdao Station (275 ind./L) and Hangxiao Station (73 ind./L). Furthermore, a 24-h sampling analysis conducted at Hangxiao Station revealed that the microzooplankton assemblages were characterized by a bimodal diel vertical migration pattern, with the highest densities occurring at dusk (154 ind./L), followed by dawn (146 ind./L), noon (93 ind./L) and midnight (77 ind./L). The density of microzooplankton in the Jiaozhou Bay was in the middle range of the densities of temperate coastal waters worldwide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The North Atlantic spring bloom is one of the largest annual biological events in the ocean, and is characterized by dominance transitions from siliceous (diatoms) to calcareous (coccolithophores) algal groups. To study the effects of future global change on these phytoplankton and the biogeochemical cycles they mediate, a shipboard continuous culture experiment (Ecostat) was conducted in June 2005 during this transition period. Four treatments were examined: (1) 12 degrees C and 390 ppm CO2 (ambient control), (2) 12 degrees C and 690 ppm CO2 (high pCO(2)) (3) 16 degrees C and 390 ppm CO2 (high temperature), and (4) 16 degrees C and 690 ppm CO2 ('greenhouse'). Nutrient availability in all treatments was designed to reproduce the low silicate conditions typical of this late stage of the bloom. Both elevated pCO(2) and temperature resulted in changes in phytoplankton community structure. Increased temperature promoted whole community photosynthesis and particulate organic carbon (POC) production rates per unit chlorophyll a. Despite much higher coccolithophore abundance in the greenhouse treatment, particulate inorganic carbon production (calcification) was significantly decreased by the combination of increased pCO(2) and temperature. Our experiments suggest that future trends during the bloom could include greatly reduced export of calcium carbonate relative to POC, thus providing a potential negative feedback to atmospheric CO2 concentration. Other trends with potential climate feedback effects include decreased community biogenic silica to POC ratios at higher temperature. These shipboard experiments suggest the need to examine whether future pCO2 and temperature increases on longer decadal timescales will similarly alter the biological and biogeochemical dynamics of the North Atlantic spring bloom.