1000 resultados para Atrina vexillum, mass
Resumo:
An LC/MS/MS method was developed and validated for the simultaneous identification, confirmation, and quantification of 12 glucocorticoids in bovine milk. The method was validated in accordance with the criteria defined in Commission Decision 2002/657/EC. The developed method can detect and confirm the presence of dexamethasone, betamethasone, prednisolone, flumethasone, 6 alpha-methylprednisolone, fluorometholone, triamcinolone acetonide, prednisone, cortisone, hydrocortisone, clobetasol propionate, and clobetasol butyrate in bovine milk. Milk samples are extracted with acetonitrile; sodium chloride is subsequently added to aid partition of the milk and acetonitrile mixture. The acetonitrile extract is then subjected to liquid-liquid purification by the addition of hexane. The purified extract is evaporated to dryness and reconstituted in a water acetonitrile mixture, and determination is carried out by LC/MS/MS. The method permits analysis of up to 30 samples in 1 day.
Resumo:
A rapid liquid chromatography tandem mass spectrometry (LC-MS/MS) method has been developed and validated for the simultaneous identification, confirmation and quantitation of seven licensed anti-inflammatory drugs (AIDS) in bovine milk. The method was validated in accordance with the criteria defined in Commission Decision 2002/657/EC. Two classes of AIDS were investigated, corticosteroids and non-steroidal anti-inflammatory drugs (NSAIDs). The developed method is capable of detecting and confirming dexamethasone (DXM), betamethasone (BTM), prednisolone (FRED), tolfenamic acid (TV), 5-hydroxy flunixin (5-OH-FLU). meloxicam (MLX) and 4-methyl amino antipyrine (4-MAA) at their associated maximum residue limits (MRLs). These compounds represent all the corticosteroids and NSAIDs licensed for use in bovine animals producing milk for human consumption. These compounds have never been analysed before in the same method and also 4-methyl amino antipyrine has never been analysed with the other licensed NSAIDs. The method can be considered rapid as permits the analysis of up to 30 samples in one day. Milk samples are extracted with acetonitrile; sodium chloride is added to aid partition of the milk and acetonitrile mixture. The acetonitrile extract is then subjected to liquid-liquid purification by the addition of hexane. The purified extract is finally evaporated to dryness and reconstituted in a water/acetonitrile mixture and determination is carried out by LC-MS/MS. Decision limit (CC alpha) values and detection capability (CC beta) values have been established for each compound. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A confirmatory method has been developed and validated that allows for the simultaneous detection of medroxyprogesterone acetate (MPA), megestrol acetate (MGA), melengestrol acetate (MLA), chlormadinone acetate (CMA) and delmadinone acetate (DMA) in animal kidney fat using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The compounds were extracted from kidney fat using acetonitrile, defatted using a hexane wash and subsequent saponification. Extracts were then purified on Isolute CN solid-phase extraction cartridges and analysed by LC-MS/MS. The method was validated in animal kidney fat in accordance with the criteria defined in Commission Decision 2002/657/EC. The decision limit (CC) was calculated to be 0.12, 0.48, 0.40, 0.63 and 0.54 g kg-1, respectively, for MPA, MGA, MLA, DMA and CMA, with respective detection capability (CC) values of 0.20, 0.81, 0.68, 1.07 and 0.92 g kg-1. The measurement uncertainty of the method was estimated at 16, 16, 19, 27 and 26% for MPA, MGA, MLA, DMA and CMA, respectively. Fortifying kidney fat samples (n = 18) in three separate assays showed the accuracy of the method to be between 98 and 100%. The precision of the method, expressed as % RSD, for within-laboratory reproducibility at three levels of fortification (1, 1.5 and 2 g kg-1 for MPA, 5, 7.5 and 10 g kg-1 for MGA, MLA, DMA and CMA) was less than 5% for all analytes.
Resumo:
A method is described for the quantitative confirmation of halofuginone (HFG) residues in chicken liver and eggs. This method is based on LC coupled to positive ion electrospray MS-MS of the tissue extracts, prepared by trypsin digestion of the tissues followed by liquid-liquid extraction and final clean-up using Solid Phase Extraction (SPE). The [M+H](+) ion at m/z 416 is monitored along with four transitions at m/z 398, 138, 120 and 100. The method has been validated according to the draft EU criteria for the analysis of veterinary drug residues at 15, 30 and 45 mug kg (-1) in liver and 5, 15 and 50 mug kg (-1) in eggs. The new analytical limits, CCalpha and CCbeta were calculated for liver and were 35.4 and 43.6 mug kg (-1), respectively. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
A liquid chromatography-thermospray mass spectrometric assay was developed and validated to confirm the presence of illegal residues of the synthetic androgenic growth promoter, trenbolone acetate, in cattle. The assay was specific for 17alpha-trenbolone, the major bovine metabolite of trenbolone acetate. Methods were developed for the determination of 17alpha-trenbolone in both bile and faeces, the most appropriate matrices for the control of trenbolone acetate abuse. The clean-up.procedure developed relied on enzymatic hydrolysis, followed by sequential liquid-liquid and liquid-solid extraction. The extracts were then subjected to immunoaffinity chromatography. 17alpha-Trenbolone was detected by selected ion monitoring at m/z 271 using positive ion thermospray ionisation. The limit of detection was approximately 0.5 ng/g in faeces and 0.5 ng/ml in bile.