994 resultados para Atoms


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The problem of resonant generation of nonground-state condensates is addressed aiming at resolving the seeming paradox that arises when one resorts to the adiabatic representation. In this picture, the eigenvalues and eigenfunctions of a time-dependent Gross-Pitaevskii Hamiltonian are also functions of time. Since the level energies vary in time, no definite transition frequency can be introduced. Hence no external modulation with a fixed frequency can be made resonant. Thus, the resonant generation of adiabatic coherent modes is impossible. However, this paradox occurs only in the frame of the adiabatic picture. It is shown that no paradox exists in the properly formulated diabatic representation. The resonant generation of diabatic coherent modes is a well defined phenomenon. As an example, the equations are derived, describing the generation of diabatic coherent modes by the combined resonant modulation of the trapping potential and atomic scattering length.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bose systems, subject to the action of external random potentials, are considered. For describing the system properties, under the action of spatially random potentials of arbitrary strength, the stochastic mean-field approximation is employed. When the strength of disorder increases, the extended Bose-Einstein condensate fragments into spatially disconnected regions, forming a granular condensate. Increasing the strength of disorder even more transforms the granular condensate into the normal glass. The influence of time-dependent external potentials is also discussed. Fastly varying temporal potentials, to some extent, imitate the action of spatially random potentials. In particular, strong time-alternating potential can induce the appearance of a nonequilibrium granular condensate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Periodic first-principles calculations based on density functional theory at the B3LYP level has been carried out to investigate the photoluminescence (PL) emission of BaZrO(3) assembled nanoparticles at room temperature. The defect created in the nanocrystals and their resultant electronic features lead to a diversification of electronic recombination within the BaZrO(3) band gap. Its optical phenomena are discussed in the light of photoluminescence emission at the green-yellow region around 570 nm. The theoretical model for displaced atoms and/or angular changes leads to the breaking of the local symmetry, which is based on the refined structure provided by Rietveld methodology. For each situation a band structure, charge mapping, and density of states were built and analyzed. X-ray diffraction (XRD) patterns, UV-vis measurements, and field emission scanning electron microscopy (FE-SEM) images are essential for a full evaluation of the crystal structure and morphology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the loading of sodium atoms into a magneto-optical trap from current-controlled sodium metal dispensers. Contrary to what was previously reported [V. Wippel, C. Binder, W. Huber, L Windholz, M. Allegrini, F. Fuso, E. Arimondo, Eur. Phys. J. D 17 (2001) 2851 we demonstrate a significantly higher number of trapped atoms that make Na dispensers a feasible source of atoms for cold-atom studies. The inherent rise in pressure that naturally arises from metal dispensers as they are heated to release atoms is partially controlled by placing the metal dispensers near the pumping port where an ion pump is connected. We also study the effects of placing the sodium dispensers at different distances from the main vacuum chamber where the atoms are trapped and the effectiveness of using a Zeeman slower to cool the atoms as they emerge from the dispensers. We observe trapping of up to 1.9 x 10(8) atoms, which is significantly higher by almost three orders of magnitude than previously reported experiments. (C) 2008 Elsevier B.V. All rights reserved.