999 resultados para Archais angulatus, d13C
Resumo:
Early Paleogene warm climates may have been linked to different modes and sources of deepwater formation. Warm polar temperatures of the Paleocene and Eocene may have resulted from either increased atmospheric trace gases or increased heat transport through deep and intermediate waters. The possibility of increasing ocean heat transport through the production of warm saline deep waters (WSDW) in the Tethyan region has generated considerable interest. In addition, General Circulation Model results indicate that deepwater source regions may be highly sensitive to changing basin configurations. To decipher deepwater changes, we examined detailed benthic foraminiferal faunal and isotopic records of the late Paleocene through the early Eocene (~60 to 50 Ma) from two critical regions: the North Atlantic (Bay of Biscay Site 401) and the Pacific (Shatsky Rise Site 577). These records are compared with published data from the Southern Ocean (Maud Rise Site 690, Islas Orcadas Rise Site 702). During the late Paleocene, similar benthic foraminiferal delta18O values were recorded at all four sites. This indicates uniform deepwater temperatures, consistent with a single source of deep water. The highest delta13C values were recorded in the Southern Ocean and were 0.5 per mil more positive than those of the Pacific. We infer that the Southern Ocean was proximal to a source of nutrient-depleted deep water during the late Paleocene. Upper Paleocene Reflector Ab was cut on the western Bermuda Rise by cyclonically circulating bottom water, also suggesting a vigorous source of bottom water in the Southern Ocean. A dramatic negative excursion in both carbon and oxygen isotopes occurred in the latest Paleocene in the Southern Ocean. This is a short-term (<100 kyr), globally synchronous event which also is apparent in both the Atlantic and Pacific records as a carbon isotopic excursion of approximately 1 per mil. Faunal analyses from the North Atlantic and Pacific sites indicate that the largest benthic foraminiferal faunal turnover of the Cenozoic was synchronous with the isotopic excursion, lending support to the hypothesis that the extinctions were caused by a change in deepwater circulation. We speculate that the Southern Ocean deepwater source was reduced or eliminated at the time of the excursion. During the early Eocene, Southern Ocean delta13C values remained enriched relative to the North Atlantic and Pacific. However, the Southern Ocean was also enriched in delta18O relative to these basins. We interpret that these patterns indicate that although the Southern Ocean was proximal to a source of cool, nutrient-depleted water, the intermediate to upper deep water sites of the North Atlantic and Pacific were ventilated by a different source that probably originated in low latitudes, i.e., WSDW.
Resumo:
Five delta13C records from the deep ocean, extending back to 1.3 Ma, were examined in order to constrain changes in mean ocean carbon isotope composition and thermohaline circulation over the 41- to 100-ka climate transition. These data show that significant perturbations in mean ocean carbon chemistry were associated with the mid-Pleistocene climate transition. Notable features of the last 1.3 Myr are (1) a pronounced ~0.3? decrease in mean ocean delta13C between 0.9 and 1.0 Myr, followed by a return to pre-1.0 Ma values by 400 ka B.P., which we propose was due to the onetime addition of isotopically depleted terrestrial carbon to the ocean, possibly associated with an increase in global aridity (and decrease in the size of the biosphere) across the 41- to 100-ka transition; (2) no change in the Atlantic-Pacific (A-P) delta13C gradient over the last 1.3 Myr, suggesting no change in mean ocean nutrient content accompanied the addition of light carbon; and (3) stronger vertical nutrient fractionation in the North Atlantic in the middle Pleistocene between sites 607 and 552, suggesting weaker North Atlantic Deep Water formation at this time relative to the early and late Pleistocene. We also find evidence for a more pronounced deep recirculation gyre in the western North Atlantic basin in the early Brunhes, as evidenced by "aging" of deep northern basin water (site 607) relative to deep water in the equatorial Atlantic (site 664).
Resumo:
Distinctive light-dark color cycles in sediment beneath the Benguela Current Upwelling System indicate repetitive alternations in sediment delivery and deposition. Geochemical proxies for paleoproductivity and for depositional conditions were employed to investigate the paleoceanographic processes involved in creating these cycles in three mid-Pleistocene intervals from ODP Sites 1082 and 1084. Concentrations of total organic carbon (TOC) vary between 3.5 and 17.1%. Concentrations of CaCO3 vary inversely to TOC and Al, which suggests that both carbonate dissolution and terrigenous dilution contribute to the light-dark cycles. Opal concentrations are independent of both TOC and CaCO3, therefore eliminating diatom production and lateral transport of shelf material as causes of the light-dark cycles. d13Corg and d15Ntot values do not vary across light-dark sediment intervals, implying that the extent of relative nutrient utilization did not change. The stable d15Ntot values represent a balanced change in nitrate supply and export production and therefore indicate that productivity was elevated during deposition of the TOC-rich layers. Parallel changes in concentrations of indicator trace elements and TOC imply that changes in organic matter delivery influenced geochemical processes on the seafloor by controlling consumption of pore water oxygen. Cu, Ni, and Zn are enriched in the darker sediment as a consequence of greater organic matter delivery. Redox-sensitive metals vary due to loss (Mn and Ba) or enrichment (Mo) under reducing conditions created by TOC oxidation. Organic matter delivery impacts subsequent geochemical changes such as carbonate dissolution, sulfate reduction and the concentration of metals. Thus, export production is considered ultimately responsible for the generation of the color cycles.
Resumo:
Organic geochemical data of Lower Cretaceous shallow water sediments from two sites (865 and 866) drilled during ODP leg 143 are presented. The organic matter is mainly terrestrial at the bottom of the sedimentary column at site 865, whereas algal and/or bacterial organic matter is dominant at site 866. This is the first evidence of shallow water deposition of organic matter during the Early Cretaceous in the Northwestern Pacific. The lower Aptian organic carbon-rich layers from the shallow water sediments of site 866 are geochemically similar to coeval mid-water sediments of site 463.
Resumo:
Differences in regional responses to climate fluctuations are well documented on short time scales (e.g., El Niño-Southern Oscillation), but with the exception of latitudinal temperature gradients, regional patterns are seldom considered in discussions of ancient greenhouse climates. Contrary to the expectation of global warming or global cooling implicit in most treatments of climate evolution over millions of years, this paper shows that the North Atlantic warmed by as much as 6°C (1.5% decrease in d18O values of planktic foraminifera) during the Maastrichtian global cooling interval. We suggest that warming was the result of the importation of heat from the South Atlantic. Decreasing North Atlantic d18O values are also associated with increasing gradients in planktic d13C values, suggesting increasing surface-water stratification and a correlated strengthening of the North Atlantic Polar Front. If correct, this conclusion predicts arctic cooling during the late Maastrichtian. Beyond implications for the Maastrichtian, these data demonstrate that climate does not behave as if there is a simple global thermostat, even on geologic time scales.
Resumo:
Oxygen and carbon isotopic ratios were measured on left-coiling Neogloboquadrina pachyderma separated from sediments recovered from Holes 1096B (3152 m water depth) and 1101A (3280 m water depth) during Ocean Drilling Program Leg 178. The sediment samples were widely spaced, extending over the past 2.1 m.y. The nature of the sediments from which they were separated and the measured oxygen isotopic ratios show that N. pachyderma (s) is preserved in both glacial and interglacial sediments over the entire period, pointing to the possibility of extracting a detailed isotopic record at these sites extending back to 2.1 Ma.
Resumo:
Organic matter in Miocene glacial sediments in Hole 739C on the Antarctic Shelf represents erosional recycled continental material. Various indications of maturity in bulk organic matter, kerogens, and extracts imply that an exposed section of mature organic carbon-rich material was present during the Miocene. Based on biomarker, n-alkane, and kerogen analysis, a massive diamictite of early Eocene/Oligocene age at Hole 739C contains immature organic matter. Visual and pyrolysis analyses of the kerogens suggest a predominance of terrestrial organic matter in all samples from Hole 739C. A reversal of thermal maturities, i.e., more-mature overlying less-mature sections, may be related to redeposition generated from glacial erosion. Siliciclastic fluviatile sediments of Lower Cretaceous age from Hole 741A were analyzed. The organic matter from this hole contains immature aliphatic and aromatic biomarkers as well as a suite of odd carbon number-dominated nalkanes. Visual examination and pyrolysis analysis of the kerogen suggests that predominantly immature terrestrial organic matter is present at Hole 741A. The similarities between Hole 739C Unit V and Hole 741A suggest that the source of the organic matter in the glacial sediments in Unit V at Hole 739C could be Cretaceous in age and similar to sediments sampled at Hole 741A in Prydz Bay.
Resumo:
Global cooling and the development of continental-scale Antarctic glaciation occurred in the late middle Eocene to early Oligocene (~38 to 28 million years ago), accompanied by deep-ocean reorganization attributed to gradual Antarctic Circumpolar Current (ACC) development. Our benthic foraminiferal stable isotope comparisons show that a large d13C offset developed between mid-depth (~600 meters) and deep (>1000 meters) western North Atlantic waters in the early Oligocene, indicating the development of intermediate-depth d13C and O2 minima closely linked in the modern ocean to northward incursion of Antarctic Intermediate Water. At the same time, the ocean's coldest waters became restricted to south of the ACC, probably forming a bottom-ocean layer, as in the modern ocean. We show that the modern four-layer ocean structure (surface, intermediate, deep, and bottom waters) developed during the early Oligocene as a consequence of the ACC.
Resumo:
Core and outcrop analysis from Lena mouth deposits have been used to reconstruct the Late Quaternary sedimentation history of the Lena Delta. Sediment properties (heavy mineral composition, grain size characteristics, organic carbon content) and age determinations (14C AMS and IR-OSL) are applied to discriminate the main sedimentary units of the three major geomorphic terraces, which form the delta. The development of the terraces is controlled by complex interactions among the following four factors: (1) Channel migration. According to the distribution of 14C and IR-OSL age determinations of Lena mouth sediments, the major river runoff direction shifted from the west during marine isotope stages 5-3 (third terrace deposits) towards the northwest during marine isotope stage 2 and transition to stage 1 (second terrace), to the northeast and east during the Holocene (first terrace deposits). (2) Eustasy. Sea level rise from Last Glacial lowstand to the modern sea level position, reached at 6-5 ka BP, resulted in back-filling and flooding of the palaeovalleys. (3) Neotectonics. The extension of the Arctic Mid-Ocean Ridge into the Laptev Sea shelf acted as a halfgraben, showing dilatation movements with different subsidence rates. From the continent side, differential neotectonics with uplift and transpression in the Siberian coast ridges are active. Both likely have influenced river behavior by providing sites for preservation, with uplift, in particular, allowing accumulation of deposits in the second terrace in the western sector. The actual delta setting comprises only the eastern sector of the Lena Delta. (4) Peat formation. Polygenetic formation of ice-rich peaty sand (''Ice Complex'') was most extensive (7-11 m in thickness) in the southern part of the delta area between 43 and 14 ka BP (third terrace deposits). In recent times, alluvial peat (5-6 m in thickness) is accumulated on top of the deltaic sequences in the eastern sector (first terrace).