1000 resultados para Ambiente virtual de aprendizagem
Resumo:
O objetivo deste trabalho consiste em avaliar as capacidades das femto-células, no âmbito do planeamento e otimização de redes Universal Mobile Telecommunication System (UMTS) instaladas no interior de edifícios num ambiente empresarial. A avaliação será feita através do estudo da tecnologia das femto-células, e do planeamento efetuado num cenário real onde, através do desenvolvimento e teste de um conjunto parametrizações, será avaliado o funcionamento das femto-células assim como forma de otimizar o seu desempenho. O estudo realizado permitiu identificar um conjunto de características que as femto-células partilham com as Self-Organizing Networks (SON), como a auto-configuração, auto-otimização de parâmetros rádio, ajuste dinâmico da área de cobertura, atribuição automática de Scrambling Codes (SC) e da frequência da portadora, criação automática de relações de vizinhança, entre outras, que permitem facilitar o processo de planeamento e otimização de redes móveis UMTS. Recorrendo a um cenário empresarial real, foi efetuado um planeamento celular indoor de raiz, através do qual foi possível testar o funcionamento da algumas das principais funções das femto-células, nomeadamente a capacidade de ajuste dinâmico da área de cobertura. Foi também avaliado o funcionamento de um grupo co-localizado de femto-células, onde foi possível testar parametrizações com o objetivo de melhorar o processo de handover entre as femto-células do grupo, e entre estas e a rede macro Global System for Mobile Communications (GSM). A avaliação de cada um de cada uma das parametrizações testada, é efetuada a partir das medidas recolhidas no terreno, recorrendo à ferramenta TEMS® Investigation, assim como aos Key Performance Indicators (KPIs) que as femto-células disponibilizam. Os resultados obtidos mostram o benefício da utilização das femto-células num ambiente empresarial real, assim como os eventuais problemas e desafios que podem surguir do planeamento celular indoor recorrendo à tecnologia das femto-células, sendo apresentada a parametrização que permite obter o melhor desempenho da rede instalada.
Resumo:
All over the world Distributed Generation is seen as a valuable help to get cleaner and more efficient electricity. Under this context distributed generators, owned by different decentralized players can provide a significant amount of the electricity generation. To get negotiation power and advantages of scale economy, these players can be aggregated giving place to a new concept: the Virtual Power Producer. Virtual Power Producers are multi-technology and multi-site heterogeneous entities. Virtual Power Producers should adopt organization and management methodologies so that they can make Distributed Generation a really profitable activity, able to participate in the market. In this paper we address the integration of Virtual Power Producers into an electricity market simulator –MASCEM – as a coalition of distributed producers.
Resumo:
Power systems have been suffering huge changes mainly due to the substantial increase of distributed generation and to the operation in competitive environments. Virtual power players can aggregate a diversity of players, namely generators and consumers, and a diversity of energy resources, including electricity generation based on several technologies, storage and demand response. Resource management gains an increasing relevance in this competitive context, while demand side active role provides managers with increased demand elasticity. This makes demand response use more interesting and flexible, giving rise to a wide range of new opportunities.This paper proposes a methodology for managing demand response programs in the scope of virtual power players. The proposed method is based on the calculation of locational marginal prices (LMP). The evaluation of the impact of using demand response specific programs on the LMP value supports the manager decision concerning demand response use. The proposed method has been computationally implemented and its application is illustrated in this paper using a 32 bus network with intensive use of distributed generation.
Resumo:
Smart Grids (SGs) appeared as the new paradigm for power system management and operation, being designed to integrate large amounts of distributed energy resources. This new paradigm requires a more efficient Energy Resource Management (ERM) and, simultaneously, makes this a more complex problem, due to the intensive use of distributed energy resources (DER), such as distributed generation, active consumers with demand response contracts, and storage units. This paper presents a methodology to address the energy resource scheduling, considering an intensive use of distributed generation and demand response contracts. A case study of a 30 kV real distribution network, including a substation with 6 feeders and 937 buses, is used to demonstrate the effectiveness of the proposed methodology. This network is managed by six virtual power players (VPP) with capability to manage the DER and the distribution network.
Resumo:
Power systems have been through deep changes in recent years, namely with the operation of competitive electricity markets in the scope and the increasingly intensive use of renewable energy sources and distributed generation. This requires new business models able to cope with the new opportunities that have emerged. Virtual Power Players (VPPs) are a new player type which allows aggregating a diversity of players (Distributed Generation (DG), Storage Agents (SA), Electrical Vehicles, (V2G) and consumers), to facilitate their participation in the electricity markets and to provide a set of new services promoting generation and consumption efficiency, while improving players` benefits. A major task of VPPs is the remuneration of generation and services (maintenance, market operation costs and energy reserves), as well as charging energy consumption. This paper proposes a model to implement fair and strategic remuneration and tariff methodologies, able to allow efficient VPP operation and VPP goals accomplishment in the scope of electricity markets.
Resumo:
The increasing importance given by environmental policies to the dissemination and use of wind power has led to its fast and large integration in power systems. In most cases, this integration has been done in an intensive way, causing several impacts and challenges in current and future power systems operation and planning. One of these challenges is dealing with the system conditions in which the available wind power is higher than the system demand. This is one of the possible applications of demand response, which is a very promising resource in the context of competitive environments that integrates even more amounts of distributed energy resources, as well as new players. The methodology proposed aims the maximization of the social welfare in a smart grid operated by a virtual power player that manages the available energy resources. When facing excessive wind power generation availability, real time pricing is applied in order to induce the increase of consumption so that wind curtailment is minimized. The proposed method is especially useful when actual and day-ahead wind forecast differ significantly. The proposed method has been computationally implemented in GAMS optimization tool and its application is illustrated in this paper using a real 937-bus distribution network with 20310 consumers and 548 distributed generators, some of them with must take contracts.
Resumo:
This paper presents MASCEM - a multi-agent based electricity market simulator. MASCEM uses game theory, machine learning techniques, scenario analysis and optimisation techniques to model market agents and to provide them with decision-support. This paper mainly focus on the MASCEM ability to provide the means to model and simulate Virtual Power Producers (VPP). VPPs are represented as a coalition of agents, with specific characteristics and goals. The paper detail some of the most important aspects considered in VPP formation and in the aggregation of new producers and includes a case study.
Resumo:
Distributed energy resources will provide a significant amount of the electricity generation and will be a normal profitable business. In the new decentralized grid, customers will be among the many decentralized players and may even help to co-produce the required energy services such as demand-side management and load shedding. So, they will gain the opportunity to be more active market players. The aggregation of DG plants gives place to a new concept: the Virtual Power Producer (VPP). VPPs can reinforce the importance of these generation technologies making them valuable in electricity markets. In this paper we propose the improvement of MASCEM, a multi-agent simulation tool to study negotiations in electricity spot markets based on different market mechanisms and behavior strategies, in order to take account of decentralized players such as VPP.
Resumo:
O cancro colo - rectal (CCR) é um problema de saúde mundial, estando associadas elevadas taxas de mortalidade e morbilidade. A maioria de CCR deriva de pólipos adenomatosos.. Um estudo retrospectivo, efectuado no serviço de Radiologia, dos achados imagiológicos típicos e atípicos, entre Janeiro de 2008 e Junho 2010. A Colonoscopia Virtual, apresenta uma sensibilidade elevada na detecção de lesões, com dimensão superior a 10mm, permitindo um diagnóstico precoce, é um exame rápido, pouco invasivo, não há necessidade de sedação e é efectuada em ambulatório.
Resumo:
Power system organization has gone through huge changes in the recent years. Significant increase in distributed generation (DG) and operation in the scope of liberalized markets are two relevant driving forces for these changes. More recently, the smart grid (SG) concept gained increased importance, and is being seen as a paradigm able to support power system requirements for the future. This paper proposes a computational architecture to support day-ahead Virtual Power Player (VPP) bid formation in the smart grid context. This architecture includes a forecasting module, a resource optimization and Locational Marginal Price (LMP) computation module, and a bid formation module. Due to the involved problems characteristics, the implementation of this architecture requires the use of Artificial Intelligence (AI) techniques. Artificial Neural Networks (ANN) are used for resource and load forecasting and Evolutionary Particle Swarm Optimization (EPSO) is used for energy resource scheduling. The paper presents a case study that considers a 33 bus distribution network that includes 67 distributed generators, 32 loads and 9 storage units.