999 resultados para Altichiero, active 1369-1384.
Resumo:
This work reports one possible way to develop new functional coatings used to increase the life time of metallic structures. The functionalities selected and attributed to model coatings in the frame of this work were corrosion protection, self-sensing and prevention of fouling (antifouling). The way used to confer those functionalities to coatings was based on the encapsulation of active compounds (corrosion inhibitors, pH indicators and biocides) in micro and nanocontainers followed by their incorporation into the coating matrices. To confer active corrosion protection, one corrosion inhibitor (2-mercaptobenzothiazole, MBT) was encapsulated in two different containers, firstly in silica nanocapsules (SiNC) and in polyurea microcapsules (PU-MC). The incorporation of both containers in different models coatings shows a significant improvement in the corrosion protection of aluminum alloy 2024 (AA2024). Following the same approach, SiNC and PU-MC were also used for the encapsulation of phenolphthalein (one well known pH indicator) to introduce sensing properties in polymeric coatings. SiNC and PU-MC containing phenolphthalein acted as corrosion sensor, showing a pink coloration due to the beginning of cathodic reaction, resulting in a pH increase identified by those capsules. Their sensing performance was proved in suspension and when integrated in coatings for aluminium alloy 2024 and magnesium alloy AZ31. In a similar way, the biocide activity (antifouling) was assigned to two polymeric matrices using SiNC for encapsulation of one biocide (Dichloro-2-octyl-2H-isothiazol-3-one, DCOIT) and also SiNC-MBT was tested as biocide. The antifouling activity of those two encapsulated compounds was assessed through inhibition and consequent decrease in the bioluminescence of modified E. coli. That effect was verified in suspension and when incorporated in coatings for AISI 1008 carbon steel. The developed micro and nanocontainers presented the desired performance, allowing the introduction of new functionalities to model coatings, showing potential to be used as functional additives in the next generation of multifunctional coatings.
Resumo:
A finite element formulation for active vibration control of thin plate laminated structures with integrated piezoelectric layers, acting as sensors and actuators in presented. The finite element model is a nonconforming single layer triangular plate/shell element with 18 degrees of freedom for the generalized displacements and one electrical potential degree of freedom for each piezoelectric element layer, and is based on the kirchhoff classical laminated theory. To achieve a mechanism of active control of the structure dynamic response, a feedback control algorithm is used, coupling the sensor and active piezoelectric layers, and Newmark method is used to calculate yhe dynamic response of the laminated structures. The model is applied in the solution of several illustrative cases, and the results are presented and discussed.
Resumo:
More than 3000 types of active pharmaceutical ingredients (APIs) are applied in Human and veterinary medicine practice. These compounds are considered an emergent class of environmental contaminants with the ability to cause damage and unexpected effects to aquatic organisms, namely in species of high commercial value. APIs are ubiquitous in the environment being frequently detected in influents and effluents of waste water treatment plants (WWTPs), surface waters and more distressingly in the public tap water in concentrations ranging from ng to μg.L-1. Considering these premises, the present thesis focused on APIs detection in the Arade river water, the impact of summer period in APIs’ concentration alterations applying the passive sampler device, POCIS (polar organic compound integrative sampler), as well as, the assessment of the effects caused by non-steroidal anti-inflammatory drugs (NSAID) ibuprofen (IBU) and diclofenac (DCF) and antidepressant selective serotonin reuptake inhibitor (SSRI) fluoxetine as single and mixture exposures along with a classical contaminant copper (Cu) on a non-target species, mussel Mytilus galloprovincialis. For this purpose, a multibiomarker approach was applied namely including biomarkers of oxidative stress (antioxidant enzymes activities of superoxide dismutase – SOD, catalase – CAT, glutathione reductase – GR and Phase II glutathione-S-transferase), damage - lipid peroxidation (LPO), neurotoxic effects (through the activity of acetylcholinesterase enzyme - AChE) and endocrine disruption (through vitellogenin-like proteins measurement applying the indirect method of alkali-labile phosphate - ALP) after exposure of mussel species’ to selected APIs at environmental relevant concentrations. The main results highlighted the occurrence of 19 APIs in the river Arade from several distinct therapeutic classes. Stimulant caffeine, antiasthmatic theophylline, NSAID ibuprofen and analgesic paracetamol presented the highest concentrations. Summer impact was inconclusive due to each API transient concentration in each month. The multibiomarker results revealed distinct responses towards each selected API (as single exposure or as mixtures) that were tissue and time dependent. Several multistressor interactions were proposed for each biomarker. The results also revealed APIs potential to induce oxidative stress, LPO, neurotoxicity and endocrine disruption even at extremely low concentrations on a species extremely vulnerable to APIs presence highlighting the urgency on the development of methodologies able to prevent its entrance in the aquatic environment.
Resumo:
Thesis (Master's)--University of Washington, 2012
Resumo:
BACKGROUND: Researchers have tested the beliefs of sportspeople and sports medicine specialists that cognitive strategies influence strength performance. Few investigators have synthesised the literature. OBJECTIVES: The specific objectives were to review evidence regarding (a) the cognitive strategy-strength performance relationship; (b) participant skill level as a moderator; and (c) cognitive, motivational, biomechanical/physiological, and emotional mediators. METHOD: Studies were sourced via electronic databases, reference lists of retrieved articles, and manual searches of relevant journals. Studies had to be randomised or counterbalanced experiments with a control group or condition, repeated measures, and a quality control score above 0.5 (out of 1). Cognitive strategies included goal setting, imagery, self-talk, preparatory arousal, and free choice. Dependent variables included maximal strength, local muscular endurance, or muscular power. RESULTS: Globally, cognitive strategies were reliability associated with increased strength performance (results ranged from 61 to 65 %). Results were mixed when examining the effects of specific strategies on particular dependent variables, although no intervention had an overall negative influence. Indeterminate relationships emerged regarding hypothesised mediators (except cognitive variables) and participant skill level as a moderator. CONCLUSIONS: Although cognitive strategies influence strength performance, there are knowledge gaps regarding specific types of strength, especially muscular power. Cognitive variables, such as concentration, show promise as possible mediators.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-02
Resumo:
This paper proposes a method for the design of gear tooth profiles using parabolic curve as its line of action. A mathematical model, including the equation of the line of action, the equation of the tooth profile, and the equation of the conjugate tooth profile, is developed based on the meshing theory. The equation of undercutting condition is derived from the model. The influences of the two design parameters, that present the size (or shape) of the parabolic curve relative to the gear size, on the shape of tooth profiles and on the contact ratio are also studied through the design of an example drive. The strength, including the contact and the bending stresses, of the gear drive designed by using the proposed method is analyzed by an FEA simulation. A comparison of the above characteristics of the gear drive designed with the involute gear drive is also carried out in this work. The results confirm that the proposed design method is more flexible to control the shape of the tooth profile by changing the parameters of the parabola.
Resumo:
We have developed novel composites by grafting caffeic acid (CA) onto the P(3HB)-EC based material and laccase from Trametes versicolor was used for grafting purposes. The resulting composites were designated as CA-g-P(3HB)-EC i.e., P(3HB)-EC (control), 5CA-g-P(3HB)-EC, 10CA-g-P(3HB)-EC, 15CA-g-P(3HB)-EC and 20CA-g-P(3HB)-EC. An FT-IR (Fourier-transform infrared spectroscopy) was used to examine the functional and elemental groups of the control and laccase-assisted graft composites. Evidently, 15CA-g-P(3HB)-EC composite exhibited resilient antibacterial activity against Gram-positive and Gram-negative bacterial strains, respectively. Moreover, a significant level of biocompatibility and biodegradability of the CA-g-P(3HB)-EC composites was also achieved with the human keratinocytes-like HaCaT cells and soil burial evaluation, respectively. In conclusion, the newly developed novel composites with multi characteristics could well represent the new wave of biomaterials for medical applications, and more specifically have promising future in the infection free would dressings, burn and/or skin regeneration field due to their sophisticated characteristics.
Resumo:
DESIGN: A randomized controlled trial.OB JECTIVE: To investigate the immediate effects on pressure pain thresholds over latent trigger points (TrPs) in the masseter and temporalis muscles and active mouth opening following atlanto-occipital joint thrust manipulation or a soft tissue manual intervention targeted to the suboccipital muscles. BACKGROUND : Previous studies have described hypoalgesic effects of neck manipulative interventions over TrPs in the cervical musculature. There is a lack of studies analyzing these mechanisms over TrPs of muscles innervated by the trigeminal nerve. METHODS: One hundred twenty-two volunteers, 31 men and 91 women, between the ages of 18 and 30 years, with latent TrPs in the masseter muscle, were randomly divided into 3 groups: a manipulative group who received an atlanto-occipital joint thrust, a soft tissue group who received an inhibition technique over the suboccipital muscles, and a control group who did not receive an intervention. Pressure pain thresholds over latent TrPs in the masseter and temporalis muscles, and active mouth opening were assessed pretreatment and 2 minutes posttreatment by a blinded assessor. Mixed-model analyses of variance (ANOVA) were used to examine the effects of interventions on each outcome, with group as the between-subjects variable and time as the within-subjects variable. The primary analysis was the group-by-time interaction. RESULTS: The 2-by-3 mixed-model ANOVA revealed a significant group-by-time interaction for changes in pressure pain thresholds over masseter (P<.01) and temporalis (P =.003) muscle latent TrPs and also for active mouth opening (P<.001) in favor of the manipulative and soft tissue groups. Between-group effect sizes were small. CONCLUSIONS: The application of an atlanto-occipital thrust manipulation or soft tissue technique targeted to the suboccipital muscles led to an immediate increase in pressure pain thresholds over latent TrPs in the masseter and temporalis muscles and an increase in maximum active mouth opening. Nevertheless, the effects of both interventions were small and future studies are required to elucidate the clinical relevance of these changes. LEVEL OF EVIDENCE : Therapy, level 1b. J Orthop Sports Phys Ther 2010;40(5):310-317. doi:10.2519/jospt.2010.3257. KEYWORDSDS: cervical manipulation, muscle trigger points, neck, TMJ, upper cervical.