998 resultados para Aeronáutica


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Part 19: Knowledge Management in Networks

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La conferencia "Nuevas tendencias en el sector aeroespacial: Space Situational Awareness", impartida por el experto José María Hermoso Garnica (INDRA Espacio, ex-ESA, ...) se centra en el nuevo escenario que surge en los últimos meses en torno al Space Situational Awareness. Se examinan las múltiples tecnologías implicadas en el desarrollo de esta nueva línea de investigación, prioritaria para la UE y sus programas de financiación. Finalmente, se hace una especial revisión del tema de la basura espacial y los múltiples proyectos que comienzan a ver la luz.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundado num estudo de caso sobre a TAP Air Portugal, a empresa pública nacional do sector da aeronáutica, este artigo pretende comunicar o binómio constituído por processos planeados e emergentes na gestão da mudança organizacional. Nas últimas décadas, a TAP Air Portugal vinha acumulando prejuízos constantes, desmotivação nos seus colaboradores e instabilidade laboral permanente. Com a chegada de uma nova equipa de gestão liderada por Fernando Pinto em 2000, o cenário parece ter-se invertido. O papel do líder, o estilo de gestão, as tácticas de negociação e o fomento de uma visão corporativa são debatidos. Através de um plano minuciosamente projectado e comunicado a toda a organização, observou-se uma mudança cultural alicerçada em objectivos comummente partilhados. Restaurada a confiança dos colaboradores, a empresa retomou a rota desejada.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We explore the recently developed snapshot-based dynamic mode decomposition (DMD) technique, a matrix-free Arnoldi type method, to predict 3D linear global flow instabilities. We apply the DMD technique to flows confined in an L-shaped cavity and compare the resulting modes to their counterparts issued from classic, matrix forming, linear instability analysis (i.e. BiGlobal approach) and direct numerical simulations. Results show that the DMD technique, which uses snapshots generated by a 3D non-linear incompressible discontinuous Galerkin Navier?Stokes solver, provides very similar results to classical linear instability analysis techniques. In addition, we compare DMD results issued from non-linear and linearised Navier?Stokes solvers, showing that linearisation is not necessary (i.e. base flow not required) to obtain linear modes, as long as the analysis is restricted to the exponential growth regime, that is, flow regime governed by the linearised Navier?Stokes equations, and showing the potential of this type of analysis based on snapshots to general purpose CFD codes, without need of modifications. Finally, this work shows that the DMD technique can provide three-dimensional direct and adjoint modes through snapshots provided by the linearised and adjoint linearised Navier?Stokes equations advanced in time. Subsequently, these modes are used to provide structural sensitivity maps and sensitivity to base flow modification information for 3D flows and complex geometries, at an affordable computational cost. The information provided by the sensitivity study is used to modify the L-shaped geometry and control the most unstable 3D mode.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The generation of identical droplets of controllable size in the micrometer range is a problem of much interest owing to the numerous technological applications of such droplets. This work reports an investigation of the regime of periodic emission of droplets from an electrified oscillating meniscus of a liquid of low viscosity and high electrical conductivity attached to the end of a capillary tube, which may be used to produce droplets more than ten times smaller than the diameter of the tube. To attain this periodic microdripping regime, termed axial spray mode II by Juraschek and Röllgen [R. Juraschek and F. W. Röllgen, Int. J. Mass Spectrom. 177, 1 (1998)], liquid is continuously supplied through the tube at a given constant flow rate, while a dc voltage is applied between the tube and a nearby counter electrode. The resulting electric field induces a stress at the surface of the liquid that stretches the meniscus until, in certain ranges of voltage and flow rate, it develops a ligament that eventually detaches, forming a single droplet, in a process that repeats itself periodically. While it is being stretched, the ligament develops a conical tip that emits ultrafine droplets, but the total mass emitted is practically contained in the main droplet. In the parametrical domain studied, we find that the process depends on two main dimensionless parameters, the flow rate nondimensionalized with the diameter of the tube and the capillary time, q, and the electric Bond number BE, which is a nondimensional measure of the square of the applied voltage. The meniscus oscillation frequency made nondimensional with the capillary time, f, is of order unity for very small flow rates and tends to decrease as the inverse of the square root of q for larger values of this parameter. The product of the meniscus mean volume times the oscillation frequency is nearly constant. The characteristic length and width of the liquid ligament immediately before its detachment approximately scale as powers of the flow rate and depend only weakly on the applied voltage. The diameter of the main droplets nondimensionalized with the diameter of the tube satisfies dd≈(6/π)1/3(q/f)1/3, from mass conservation, while the electric charge of these droplets is about 1/4 of the Rayleigh charge. At the minimum flow rate compatible with the periodic regimen, the dimensionless diameter of the droplets is smaller than one-tenth, which presents a way to use electrohydrodynamic atomization to generate droplets of highly conducting liquids in the micron-size range, in marked contrast with the cone-jet electrospray whose typical droplet size is in the nanometric regime for these liquids. In contrast with other microdripping regimes where the mass is emitted upon the periodic formation of a narrow capillary jet, the present regime gives one single droplet per oscillation, except for the almost massless fine aerosol emitted in the form of an electrospray.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The rolling stock circulation depends on two different problems: the rolling stock assignment and the train routing problems, which up to now have been solved sequentially. We propose a new approach to obtain better and more robust circulations of the rolling stock train units, solving the rolling stock assignment while accounting for the train routing problem. Here robustness means that difficult shunting operations are selectively penalized and propagated delays together with the need for human resources are minimized. This new integrated approach provides a huge model. Then, we solve the integrated model using Benders decomposition, where the main decision is the rolling stock assignment and the train routing is in the second level. For computational reasons we propose a heuristic based on Benders decomposition. Computational experiments show how the current solution operated by RENFE (the main Spanish train operator) can be improved: more robust and efficient solutions are obtained

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Incidents and rolling stock breakdowns are commonplace in rapid transit rail systems and may disrupt the system performance imposing deviations from planned operations. A network design model is proposed for reducing the effect of disruptions less likely to occur. Failure probabilities are considered functions of the amount of services and the rolling stock’s routing on the designed network so that they cannot be calculated a priori but result from the design process itself. A two recourse stochastic programming model is formulated where the failure probabilities are an implicit function of the number of services and routing of the transit lines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The railway planning problem is usually studied from two different points of view: macroscopic and microscopic. We propose a macroscopic approach for the high-speed rail scheduling problem where competitive effects are introduced. We study train frequency planning, timetable planning and rolling stock assignment problems and model the problem as a multi-commodity network flow problem considering competitive transport markets. The aim of the presented model is to maximize the total operator profit. We solve the optimization model using realistic probleminstances obtained from the network of the Spanish railwa operator RENFE, including other transport modes in Spain