999 resultados para Adamussium colbecki, d13C


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A mid-Holocene climate optimum is inferred from a palaeosalinity reconstruction of a closed saline lake (Beall Lake) from the Windmill Islands, East Antarctica using an expanded diatom salinity weighted averaging (WA) regression and calibration model. The addition of 14 lakes and ponds from the Windmill Islands, East Antarctica, to an existing weighted averaging regression and calibration palaeosalinity model of 33 lakes from the Vestfold Hills, East Antarctica expands the number of taxa and lakes and the range of salinity in the existing model and improves the model's predictive ability. This improved model was used to infer Holocene changes in lake water salinity in Beall Lake, Windmill Islands. Six changes in diatom-inferred salinity in Beall Lake are put into broad chronological context based on three radiocarbon dates: as the East Antarctic Ice Sheet (EAIS) retreated from the Windmill Islands during the early Holocene (~9000-8130 corr. yr BP), Beall Lake formed as a melt water-fed freshwater lake, which gradually became more saline as marine influence increased from ~8000 corr. yr BP. Between ~8000 and 4800 corr. yr BP, the diatom assemblage included planktonic marine taxa such as Chaetoceros spp. and cryophilic taxa such as Fragilariopsis cylindrus, which indicate favourable summer growth conditions. A mid-Holocene warm period produced a climate that was warmer and more humid with increased precipitation and snow accumulation. This is reflected in the Beall Lake core as a reduction in the salinity of the lake diatom assemblage from ~4800-4600 corr. yr BP. Holocene isostatic uplift rates in the Windmill Islands vary from 5-6 m/1000 yr. By applying this uplift rate, it is calculated that the bedrock would have risen above sea level by ~4000 yr BP. The Beall Lake core diatom assemblage from ~4600-2900 corr. yr BP includes both marine cryophilic and planktonic taxa together with freshwater benthic and planktonic lacustrine taxa. This mix of species indicates the emergence of the lake from the sea around ~4600 corr. yr BP. From ~2800 corr. yr BP, retreat of the ice margin led to increasing melt water inputs and associated freshening of the lake basin until ~1900 corr. yr BP. The lake basin had no oceanic influence by this time, allowing a terrestrial freshwater flora to establish and thrive for the next ~1000 yr. At ~1850 corr. yr BP, a sudden and rapid salinity change is evident in Beall Lake. A late Holocene warm period between 2000 and 1000 yr BP has been observed in ice core records from Law Dome (an ice cap abutting the Windmill Islands to the east and north). It is therefore inferred that, at ~1850 corr. yr BP, summer temperatures within the Beall Lake catchment area were much higher than present summer temperatures. The climate optimum identified in the Beall Lake core ~4800 yr BP confirms mid-Holocene warming of the Windmill Islands and suggests a synchronous mid-Holocene climate optimum occurred across coastal East Antarctica. In addition, the abrupt climate change inferred at ~1850 yr BP suggests that higher resolution sampling of sediment cores from coastal East Antarctic limnological oases will provide more evidence of rapid climate change events over coastal East Antarctica in future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Total mercury (THg), methylmercury (MeHg) and stable isotopes of nitrogen (d15N) and carbon (d13C) were measured in three invertebrate, five fish, three seabird and three marine mammal species of central West Greenland to investigate trophic transfer of mercury in this Arctic marine food web. The food web magnification factor (FWMF) estimated as the slope of the regression between the natural logarithm of THg or MeHg concentrations (mg/kg dw) and tissue d15N (per mil) was estimated to 0.183 (SE = 0.052) for THg and 0.339 (SE = 0.075) for MeHg. The FWMFs were not only comparable with those reported for other Arctic marine food webs but also with quite different food webs such as freshwater lakes in the sub-Arctic, East Africa and Papua New Guinea. This suggests similar mechanisms of mercury assimilation and isotopic (d15N) discrimination among a broad range of aquatic taxa and underlines the possibility of broad ecosystem comparisons using the combined contaminant and stable isotope approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interval of time represented by marine isotope stages 11 and 12 (~360-470 ka) contains what may be the most extreme glacial and interglacial climate conditions of the Late Pleistocene. It has been suggested that sea level rose by ~160 m at the termination of glacial stage 12. This is 30% greater than the sea level rise that followed the most recent glacial maximum. There have been few detailed studies of the unique conditions that existed during the stage 11-12 time period because of the lack of high-quality core material. This problem has been addressed by the collection of high deposition rate cores from sediment drifts in the western North Atlantic during Ocean Drilling Project Leg 172. Benthic foraminiferal d13C data from cores collected between ~4600 and 1800 m were used to reconstruct bathymetric gradients in deep and intermediate water properties for selected time slices during this glacial-interglacial cycle. During glacial stage 12, the deep western North Atlantic was filled by a water mass that was more nutrient-enriched than modern Antarctic Bottom Water. Above 2000 m, a more nutrient-depleted water mass existed during this glacial stage. Such an intermediate water mass has been described for more recent glacial periods and presumably forms in a more proximate region of the North Atlantic. Interglacial stage 11 water mass properties closely resemble those of the present-day western North Atlantic. A nutrient-depleted water mass (d13C of 0.75-1.0 per mil), similar to modern North Atlantic Deep Water existed between 3500 and 2000 m. This was underlain by a water mass with lower d13C values (<0.75 per mil) that probably was derived from a southern source. Using Leg 172 data, along with previously published results from the Atlantic and Pacific oceans, we estimate a mean global d13C change of 0.95 per mil from stage 12 to stage 11. This is twice the whole ocean ?13C change reported for the transition from the last glacial maximum to the Holocene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Substantial amounts of adsorbed methane were detected in authigenic carbonate concretions recovered from sedimentary layers from depths between 245 and 1,108 m below seafloor during Ocean Drilling Program Leg 186 to ODP sites 1150 and 1151 on the deep-sea terrace of the Japan Trench. Methane contents were almost two orders of magnitude higher in the concretions (291-4,528 nmol/g wet wt) than in the surrounding bulk sediments (5-93 nmol/g wet wt), whereas methane/ethane ratios and stable carbon isotopic compositions were very similar. Carbonate content of surrounding bulk sediments (0.02-3.2 wet wt%) and methane content of the surrounding bulk sediments correlated positively. Extrapolation of the carbonate contents of bulk sediments suggests that 100 wt% carbonate would correspond to 1,886±732 nmol methane per g bulk sediment, which is similar to the average value observed in the carbonate concretions (1,321±1,067 nmol/g wet wt, n = 13). These data support the hypothesis that, in sediments, adsorbed hydrocarbon gases are strongly associated with authigenic carbonates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Methane (CH4) is a strong greenhouse gas known to have perturbed global climate in the past, especially when released in large quantities over short time periods from continental or marine sources. It is therefore crucial to understand and, if possible, quantify the individual and combined response of these variable methane sources to natural climate variability. However, past changes in the stability of greenhouse gas reservoirs remain uncertain and poorly constrained by geological evidence. Here, we present a record from the Congo fan of a highly specific bacteriohopanepolyol (BHP) biomarker for aerobic methane oxidation (AMO), 35-aminobacteriohopane-30,31,32,33,34-pentol (aminopentol), that identifies discrete periods of increased AMO as far back as 1.2 Ma. Fluctuations in the concentration of aminopentol, and other 35-aminoBHPs, follow a pattern that correlates with late Quaternary glacial-interglacial climate cycles, with highest concentrations during warm periods. We discuss possible sources of aminopentol, and the methane consumed by the precursor methanotrophs, within the context of the Congo River setting, including supply of methane oxidation markers from terrestrial watersheds and/or marine sources (gas hydrate and/or deep subsurface gas reservoir). Compound-specific carbon isotope values of -30 per mil to -40 per mil for BHPs in ODP 1075 and strong similarities between the BHP signature of the core and surface sediments from the Congo estuary and floodplain wetlands from the interior of the Congo River Basin, support a methanotrophic and likely terrigenous origin of the 35-aminoBHPs found in the fan sediments. This new evidence supports a causal connection between marine sediment BHP records of tropical deep sea fans and wetland settings in the feeding river catchments, and thus tropical continental hydrology. Further research is needed to better constrain the different sources and pathways of methane emission. However, this study identifies the large potential of aminoBHPs, in particular aminopentol, to trace and, once better calibrated and understood, quantify past methane sources and fluxes from terrestrial and potentially also marine sources.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An area of massive barite precipitations was studied at a tectonic horst in 1500 m water depth in the Derugin Basin, Sea of Okhotsk. Seafloor observations and dredge samples showed irregular, block- to column-shaped barite build-ups up to 10 m high which were scattered over the seafloor along an observation track 3.5 km long. High methane concentrations in the water column show that methane expulsion and probably carbonate precipitation is a recently active process. Small fields of chemoautotrophic clams (Calyptogena sp., Acharax sp.) at the seafloor provide additional evidence for active fluid venting. The white to yellow barites show a very porous and often layered internal fabric, and are typically covered by dark-brown Mn-rich sediment; electron microprobe spectroscopy measurements of barite sub-samples show a Ba substitution of up to 10.5 mol% of Sr. Rare idiomorphic pyrite crystals (~1%) in the barite fabric imply the presence of H2S. This was confirmed by clusters of living chemoautotrophic tube worms (1 mm in diameter) found in pores and channels within the barite. Microscopic examination showed that micritic aragonite and Mg-calcite aggregates or crusts are common authigenic precipitations within the barite fabric. Equivalent micritic carbonates and barite carbonate cemented worm tubes were recovered from sediment cores taken in the vicinity of the barite build-up area. Negative d13C values of these carbonates (>-43.5 per mill PDB) indicate methane as major carbon source; d18O values between 4.04 and 5.88 per mill PDB correspond to formation temperatures, which are certainly below 5°C. One core also contained shells of Calyptogena sp. at different core depths with 14C-ages ranging from 20 680 to >49 080 yr. Pore water analyses revealed that fluids also contain high amounts of Ba; they also show decreasing SO4**2- concentrations and a parallel increase of H2S with depth. Additionally, S and O isotope data of barite sulfate (d34S: 21.0-38.6 per mill CDT; d18O: 9.0-17.6 per mill SMOW) strongly point to biological sulfate reduction processes. The isotope ranges of both S and O can be exclusively explained as the result of a mixture of residual sulfate after a biological sulfate reduction and isotopic fractionation with 'normal' seawater sulfate. While massive barite deposits are commonly assumed to be of hydrothermal origin, the assemblage of cheomautotrophic clams, methane-derived carbonates, and non-thermally equilibrated barite sulfate strongly implies that these barites have formed at ambient bottom water temperatures and form the features of a Giant Cold Seep setting that has been active for at least 49 000 yr.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Middle Eocene diatom and silicoflagellate record of ODP Site 1260A (Demerara Rise) is studied quantitatively in order to throw light on the changes that siliceous phytoplankton communities experienced during a Middle Eocene warming event that occurred between 44.0 and 42.0 Ma. Both Pianka's overlap index, calculated per couple of successive samples, and cluster analysis, point to a number of significant turnover events highlighted by changes in the structure of floristic communities. The pre-warming flora, dominated by cosmopolitan species of the diatom genus Triceratium, is replaced during the warming interval by a new and more diverse assemblage, dominated by Paralia sulcata (an indicator of high productivity) and two endemic tropical species of the genus Hemiaulus. The critical warming interval is characterized by a steady increase in biogenic silica and a comparable increase in excess Ba, both reflecting an increase in productivity. In general, it appears that high productivity not only increased the flux of biogenic silica, but also sustained a higher diversity in the siliceous phytoplankton communities. The microflora preserved above the critical interval is once again of low diversity and dominated by various species of the diatom genus Hemiaulus. All assemblages in the studied material are characterized by the total absence of continental and benthic diatoms and the relative abundance of neritic forms, suggesting a transitional depositional environment between the neritic and the oceanic realms.