993 resultados para Acute tryptophan depletion
Resumo:
Lipopolysaccharides from gram-negative bacteria are amongst the most common causative agents of acute lung injury, which is characterized by an inflammatory response, with cellular infiltration and the release of mediators/cytokines. There is evidence that bradykinin plays a role in lung inflammation in asthma but in other types of lung inflammation its role is less clear. In the present study we evaluated the role of the bradykinin B(1) receptor in acute lung injury caused by lipopolysaccharide inhalation and the mechanisms behind bradykinin actions participating in the inflammatory response. We found that in C57BI/6 mice, the bradykinin B(1) receptor expression was up-regulated 24 h after lipopolysaccharide inhalation. At this time, the number of cells and protein concentration were significantly increased in the bronchoalveolar lavage fluid and the mice developed airway hyperreactivity to methacholine. In addition, there was an increased expression of tumor necrosis factor-alpha, interleukin-1 beta and interferon-gamma and chemokines (monocytes chemotactic protein-1 and KC) in the bronchoalveolar lavage fluid and in the lung tissue. We then treated the mice with a bradykinin B, receptor antagonist, R-954 (Ac-Orn-[Oic(2), alpha-MePhe(5), D-beta Nal(7), Ile(8)]desArg(9)-bradykinin), 30 min after lipopolysaccharide administration. We observed that this treatment prevented the airway hyperreactivity as well as the increased cellular infiltration and protein content in the bronchoalveolar lavage fluid. Moreover, R-954 inhibited the expression of cytokines/chemokines. These results implicate bradykinin, acting through B(1) receptor, in the development of acute lung injury caused by lipopolysaccharide inhalation. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Purpose Acute myelogenous leukemia (AML) and myelodysplastic syndrome (MDS) primarily afflict older individuals. Hematopoietic cell transplantation (HCT) is generally not offered because of concerns of excess morbidity and mortality. Reduced-intensity conditioning (RIC) regimens allow increased use of allogeneic HCT for older patients. To define prognostic factors impacting long-term outcomes of RIC regimens in patients older than age 40 years with AML in first complete remission or MDS and to determine the impact of age, we analyzed data from the Center for International Blood and Marrow Transplant Research (CIBMTR). Patients and Methods We reviewed data reported to the CIBMTR (1995 to 2005) on 1,080 patients undergoing RIC HCT. Outcomes analyzed included neutrophil recovery, incidence of acute or chronic graft-versus-host disease (GVHD), nonrelapse mortality (NRM), relapse, disease-free survival (DFS), and overall survival (OS). Results Univariate analyses demonstrated no age group differences in NRM, grade 2 to 4 acute GVHD, chronic GVHD, or relapse. Patients age 40 to 54, 55 to 59, 60 to 64, and >= 65 years had 2-year survival rates as follows: 44% (95% Cl, 37% to 52%), 50% (95% Cl, 41% to 59%), 34% (95% Cl, 25% to 43%), and 36% (95% Cl, 24% to 49%), respectively, for patients with AML (P = .06); and 42% (95% Cl, 35% to 49%), 35% (95% Cl, 27% to 43%), 45% (95% Cl, 36% to 54%), and 38% (95% Cl, 25% to 51%), respectively, for patients with MDS (P = .37). Multivariate analysis revealed no significant impact of age on NRM, relapse, DFS, or OS (all P>.3). Greater HLA disparity adversely affected 2-year NRM, DFS, and OS. Unfavorable cytogenetics adversely impacted relapse, DFS, and OS. Better pre-HCT performance status predicted improved 2-year OS. Conclusion With these similar outcomes observed in older patients, we conclude that older age alone should not be considered a contraindication to HCT.
Resumo:
The fragmentation mechanisms of singlet oxygen [O(2) ((1)Delta(g))]-derived oxidation products of tryptophan (W) were analyzed using collision-induced dissociation coupled with (18)O-isotopic labeling experiments and accurate mass measurements. The five identified oxidized products, namely two isomeric alcohols (trans and cis WOH), two isomeric hydroperoxides (trans and cis WOOH), and N-formylkynurenine (FMK), were shown to share some common fragment ions and losses of small neutral molecules. Conversely, each oxidation product has its own fragmentation mechanism and intermediates, which were confirmed by (18)O-labeling studies. Isomeric WOH lost mainly H(2)O + CO, while WOOH showed preferential elimination of C(2)H(5)NO(3) by two distinct mechanisms. Differences in the spatial arrangement of the two isomeric WOHs led to differences in the intensities of the fragment ions. The same behavior was also found for trans and cis WOOH. FMK was shown to dissociate by a diverse range of mechanisms, with the loss of ammonia the most favored route. MS/MS analyses, (18)O-labeling, and H(2)(18)O experiments demonstrated the ability of FMK to exchange its oxygen atoms with water. Moreover, this approach also revealed that the carbonyl group has more pronounced oxygen exchange ability compared with the formyl group. The understanding of fragmentation mechanisms involved in O(2) ((1)Delta(g))-mediated oxidation of W provides a useful step toward the structural characterization of oxidized peptides and proteins. (J Am Soc Mass Spectrom 2009, 20, 188-197) (C) 2009 Published by Elsevier Inc. on behalf of American Society for Mass Spectrometry