997 resultados para Accumulation rate, benthic foraminiferal mass


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biogenic opal and organic carbon vertical rain rates in sediment cores reveal a strong cyclicity in the productivity of the upwelling system off presently arid northern Chile during the last 100,000 years. Changes in productivity are found to be in phase with the precessional cycle (~20,000 years) and with inputs of iron from the continent. During austral summer insolation maxima, increased precipitation and river runoff in the region appear to have brought high inputs of iron, mainly from the Andes, to the coastal ocean enhancing primary productivity there. We interpret our results as providing evidence for iron control of past productivity in this upwelling system and for a tight link between productivity and orbital forcing at midlatitudes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dust has the potential to modify global climate by influencing the radiative balance of the atmosphere and by supplying iron and other essential limiting micronutrients to the ocean (Martin et al., 1990, doi:10.1038/345156a0; Martin, 1990, doi:10.1029/PA005i001p00001). Indeed, dust supply to the Southern Ocean increases during ice ages, and 'iron fertilization' of the subantarctic zone may have contributed up to 40 parts per million by volume (p.p.m.v.) of the decrease (80-100 p.p.m.v.) in atmospheric carbon dioxide observed during late Pleistocene glacial cycles (Watson et al., 2000, doi:10.1038/35037561; Kohfeld et al., 2005, doi:10.1126/science.1105375; Martínez-Garcia et al., 2009, doi:10.1029/2008PA001657; Sigman et al., 2010, doi:10.1038/nature09149; Hain et al., 2010, doi:10.1029/2010gb003790). So far, however, the magnitude of Southern Ocean dust deposition in earlier times and its role in the development and evolution of Pleistocene glacial cycles have remained unclear. Here we report a high-resolution record of dust and iron supply to the Southern Ocean over the past four million years, derived from the analysis of marine sediments from ODP Site 1090, located in the Atlantic sector of the subantarctic zone. The close correspondence of our dust and iron deposition records with Antarctic ice core reconstructions of dust flux covering the past 800,000 years (Lambert et al., 2008, doi:10.1038/nature06763; Wolf et al., 2006, doi:10.1038/nature04614) indicates that both of these archives record large-scale deposition changes that should apply to most of the Southern Ocean, validating previous interpretations of the ice core data. The extension of the record beyond the interval covered by the Antarctic ice cores reveals that, in contrast to the relatively gradual intensification of glacial cycles over the past three million years, Southern Ocean dust and iron flux rose sharply at the Mid-Pleistocene climatic transition around 1.25 million years ago. This finding complements previous observations over late Pleistocene glacial cycles (Martínez-Garcia et al., 2009; Lambert et al., 2008; Wolff et al., 2006), providing new evidence of a tight connection between high dust input to the Southern Ocean and the emergence of the deep glaciations that characterize the past one million years of Earth history.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To reconstruct Recent and past sedimentary environments, marine sediments of Upper Pleistocene and Holocene ages from the eastern Arctic Ocean and especially from the Nansen-Gakkel Ridge (NGR) were investigated by means of radioisotopic, geochemical and sedimentological methods. In combination with mass physical property data and lithological analysis these investigations allow clearly to characterize the depositional environments. Age dating by using the radioisotope 230Th gives evidence that the investigated sediments from the NGR are younger than 250,000 years. Identical lithological sediment sequences within and between sediment cores from the NGR can be related to sedimentary processes which are clearly controlled by palaeoclimate. The sediments consist predominantly of siliciclastic, terrigenous ice-rafted detritus (IRD) deriving from assorted and redeposited sediments from the Siberian shelfs. By their geochemical composition the sediments are similar to mudstone, graywacke and arcose. Sea-ice as well as icebergs play a major roll in marine arctic sedimentation. In the NGR area rapid change in sedimentary conditions can be detected 128,000 years ago. This was due to drastic change in the kind of ice cover, resulting from rapid climatic change within only hundreds of years. So icebergs, deriving mostly from Siberian shelfs, vanished and sea-ice became dominant in the eastern Arctic Ocean. At least three short-period retreats of the shelf ice between 186,000 and 128,000 years are responsible for the change of coarse to fine-grained sediments in the NGR area. These warmer stages lasted between 1,000 and 3,000 years. By monitoring and comparing the distribution patterns of sedimentologic, mass physical and geochemical properties with 230Th ex activity distribution patterns in the sediment cores from the NGR, there is clear evidence that sediment dilution is responsible for high 230Th ex activity variations. Thus sedimentation rate is the controlling factor of 230Th ex activity variations. The 230Th flux density in sediments from the NGR seems to be highly dependent On topographic Position. The distribution patterns of chemical elements in sediment cores are in general governed by lithology. The derivation of a method for dry bulk density determination gave the opportunity to establish a high resolution stratigraphy on sediment cores from the eastern Arctic Ocean, based on 230Thex activity analyses. For the first time sedimentation and accumulation rates were determined for recent sediments in the eastern Arctic Ocean by 230Th ex analyses. Bulk accumulation rates are highly variable in space and time, ranging between 0.2 and 30 g/cm**2/ka. In the sediments from the NGR highly variable accumulation rates are related to the kind of ice cover. There is evidence for hydrothermal input into the sediments of the NGR. Hydrothermal activity probably also influences surficial sediments in the Sofia Basin. High contents of As are typical for surficial sediments from the NGR. In particular SL 370-20 from the bottom of the rift valley has As contents exceeding in parts 300 ppm. Hydrothermal activity can be traced back to at least 130,000 years. Recent to subrecent tectonic activity is documented by the rock debris in KAL 370 from the NGR. In four other sediment cores from the NGR rift valley area tectonically induced movements can be dated to about 130,000 years ago, related most probably to the rapid climate change. Processes of early diagenesis in sediments from the NGR caused the aobilization and redeposition of Fe, Mn and Mo. These diagenetic processes probably took place during the last 130,000 years. In sediment cores from the NGR high amounts of kaolinite are related to coarse grained siliciclastic material, probably indicating reworking and redeposition of siberian sandstones with kaolinitic binding material. In contrast to kaolinite, illite is correlated to total clay and 232Th contents. Aragonite, associated with serpentinites in the rift valley area of the NGR, was precipitated under cold bottom-water conditions. Preliminary data result in a time of formation about 60 - 80 ka ago. Manganese precipitates with high Ni contents, which can be related to the ultrabasic rocks, are of similar age.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This is part 2 of a study examining southwest African continental margin sediments from nine sites on a north-south transect from the Congo Fan (4°S) to the Cape Basin (30°S) representing two glacial (MIS 2 and 6a) and two interglacial stages (MIS 1 and 5e). Contents, distribution patterns, and molecular stable carbon isotope signatures of long-chain n-alkanes (C27-C33) and n-alkanols (C22-C32) as indicators of land plant vegetation of different biosynthetic types were correlated with concentrations and distributions of pollen taxa in sediments of the same time horizons. Selected single pollen type data reveal details of vegetation changes, but the overall picture is best illustrated by summing pollen known to predominantly derive from C4 plants or C4 plus CAM plants. The C4 plant signals in the biomarkers are recorded in the delta13C data and in the abundances of C31 and C33 n-alkanes, and the C32 n-alkanol. Calculated clusters of wind trajectories for austral summer and winter situations for the Holocene and the Last Glacial Maximum afford information on the source areas for the lipids and pollen and their transport pathways to the ocean. This multidisciplinary approach provides clear evidence of latitudinal differences in leaf wax lipid and pollen composition, with the Holocene sedimentary data paralleling the current major phytogeographic zonations. The northern sites (Congo Fan area and northern Angola Basin) get most of their terrestrial material from the Congo Basin and the Angolan highlands dominated by C3 plants. Airborne particulates derived from the western and central South African hinterland dominated by deserts, semideserts, and savannah regions are rich in organic matter from C4 plants. As can be expected from the present and glacial positions of the phytogeographic zones, the carbon isotopic signatures of n-alkanes and n-alkanols both become isotopically more enriched in 13C from north to south. In the northern part of the transect the relative importance of C4 plant indicators is higher during the glacials than in the interglacials, indicating a northward extension of arid zones favoring grass vegetation. In the south, where grass-rich vegetation merges into semidesert and desert, the difference in C4 plant indicators is small.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We studied preservation/dissolution cycles and paleoproductivity in eight sediment cores from the Peru Basin south of the highly productive surface waters of the eastern equatorial Pacific. Stratigraphy is based on stable oxygen isotopes and on combined magnetostratigraphy and biostratigraphy. Sediment cores which span the last 8 m.y., were retrieved during cruise 79 with RV SONNE close to the carbonate compensation depth (CCD). In general, sediments show Pacific-type carbonate cycles. We interpret a pronounced carbonate peak between 6 and 7 Ma as the result of a western and northern extension of the highly productive Peru Current. Decreased carbonate contents from the late Miocene to the late Pliocene might be associated with a slow contraction of the latitudinal extent of the high-productivity belt north of the study areas. During the Pliocene, carbonate variations showed 400 kyr cycles indicating the growth and decay of ice sheets, which should have been associated with pulsations of the Antarctic ice cap. An abrupt collapse of the carbonate system occurred at 2.4 Ma. Higher frequency variations of the carbonate record indicate the major increase of the northern hemisphere glaciation. During the Quaternary, carbonate fluxes are high during glacials and low during interglacials. Large amplitude variations with long broad minima and maxima, associated with small migrations of the lysocline and the CCD (< 200 m), are indicative of the preservation/dissolution history in the Peru Basin. During the early Pleistocene, climatic forcing by the 41 kyr obliquity cycle is not observed in the carbonate record. During the last 800 kyr, variability in the carbonate record was dominated by the 100 kyr eccentricity cycle. Fluxes of biogenic material (calcium carbonate, organic carbon, opal, and barium) were greatest during glacials, which imply higher productivity and export production of the Peru Current during cold climatic periods. Dissolution was greatest during interglacials as inferred from the relatively poor preservation of planktonic foraminifera and from the low accumulation rate of carbonate. After the Mid-Brunhes Event (400 ka), we observe a plateaulike shift to enhanced dissolution and to intensified productivity.