994 resultados para Acartia clausi, c4


Relevância:

10.00% 10.00%

Publicador:

Resumo:

海洋是一个巨大的生态系统,多样的微生物是构成海洋生态系统的基本元素。海洋微生物的群落结构及演变深刻的反映着海洋生态系统的变迁。本文采用分子生物学技术,研究了近海沉积物生态系统——胶州湾沉积物中细菌的多样性、群落结构的时空演替规律以及远洋深海沉积物生态系统——东太平洋海隆北纬13o附近深海沉积物中细菌和古细菌群落结构沿沉积物断层的分布情况,结果表明在两处沉积物中,微生物群落的结构都与环境因子有显著的相关性,是反映海洋沉积物环境特征的重要(分子)标志物,并且可能在这些环境中参与生物地球化学循环等重要过程。 1.从胶州湾不同区域的8个代表性站点采集4个季度的沉积物样品。提取总基因组DNA,利用16S rDNA作为分子标记,采用克隆文库对胶州湾沉积物中细菌群落的组成、空间分布和季节演替规律进行了研究。结果显示沉积物中的细菌具有高度多样性,来自于13个细菌门,同时还有28%的未鉴定克隆,表明胶州湾沉积物中蕴藏着巨大的微生物资源。其中已鉴定的优势种群是α-、β-、γ-、δ-变形细菌、绿弯菌、厚壁菌、蓝细菌和放线菌。同时还包括酸杆菌、拟杆菌、浮霉菌、疣微菌、芽单胞菌、绿菌、梭杆菌、异常球菌-栖热菌等类群的存在。将各克隆库的组成与温度、总碳、总氮等环境因子结合分析,结果显示细菌群落结构更替的主要驱动力是季节变化所带来的温度等环境因子的演变。对数据库中与本研究所获得序列具有最近亲缘关系序列的来源环境进行分析表明,胶州湾中细菌群落受航运活动、水产养殖、重金属污染等人类活动的明显影响,同时这些活动表现出显著的空间特异性,比如C4和D6等站点明显受到航运活动的影响,而A3和Y1等站点则容易受到沿岸径流所带来的淡水和油污染的影响。 2.分别利用PCR-DGGE和克隆文库技术对东太平洋海隆北纬13o附近深海柱状沉积物样品中细菌和古菌群体进行研究,结果显示这些微生物群落沿四个分别代表不同沉积年代断层明显的成层分布,与环境因子结合分析表明这种成层分布与氧化还原性质等地球化学特征的成层分布相吻合,提示我们该生态系统中的微生物受到环境因子的巨大作用,同时也表明这些微生物可能参与该生态系统中硫、金属元素代谢等过程。通过系统发育分析,四个断层中的微生物群落中呈现出很多与热液活动相关的个体(其中34.7%的细菌序列和31%的古菌序列与来源于各种热液环境的序列具有最近的亲缘关系)。但总体群落结构分析表明该区域可能属于热液活动影响区域的边缘,处于从热液活动环境到普通的低温沉积物环境的过渡区域。 3.将在胶州湾和东太平洋海隆北纬13o附近海洋沉积物生态系统中都存在的优势细菌类群(α-、β-、γ-、δ-变形细菌和放线菌、绿弯菌、厚壁菌、酸杆菌、浮霉菌)进行系统发育分析和背景比较分析,结果显示两处沉积物中的细菌优势种群虽然在大类群上很多是相同的,但是可能由于两处沉积物中不同物理化学等环境因子的选择作用(如胶州湾的近海特征和人为活动,东太平洋深海特点和热液活动),而导致优势种群在系统发育关系上距离比较远。这表明独特的微生物群落结构,特别是优势种群的群落结构信息是描述特定环境生态系统的重要方面。本研究表明在全球环境变迁中,自然环境因子和人类活动都在深刻改变着微生物群落的结构和功能。本文阐述了在环境变迁特定时期两处沉积物生态系统中的微生物群落结构及时空差异,为研究大范围生态系统的演变提供了依据,同时也为在两处沉积物环境中进行微生物参与的生物地球化学研究奠定了基础。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During spring (April/May 1999) and autumn (September/October 1998) cruises in the Bohai Sea, China, copepods were the dominant components of mesozooplankton, the most abundant species being Calanus sinicus, Centropages mcmurrichi, Paracalanus parvus, Acartia bifilosa and Oithona similis. Pigment ingestion rates by three size classes of copepods (200-500, 500-1000 and > 1000 mum) were measured. In the south of the investigation area, gut pigment content (GPC), individual pigment-specific ingestion rates and grazing impacts on phytoplankton were lower in spring than in autumn. In the central area, GPC and individual pigment-specific ingestion rates were higher in spring than in autumn. The grazing impact on phytoplankton by the copepod assemblages was lower in spring than in autumn, however, because of the relatively smaller biomass in spring. In the western area where the Bohai Sea joins the Yellow Sea, GPC, individual pigment-specific ingestion rates and grazing impacts on phytoplankton were higher in spring than in autumn. Among the three size groups, the small-sized animals (200-500 mum) contributed more than 50% (range 38-98%) of the total copepod grazing during both cruises. The grazing impact on phytoplankton by copepods was equivalent to 11.9% (range 3.0-37.1%) of the chlorophyll-a standing stock and 53.3% (range 21.4-91.4%) of the primary production during the spring cruise. Grazing impact was equivalent to 6.3% (range 2.0-11.6%) of the chlorophyll-a standing stock and >100% (range 25.7-141.6%) of the primary production during the autumn cruise. The copepod community apparently consumed only a modest proportion of the standing stock of phytoplankton during spring and autumn blooms. They did, however, sometimes graze a significant proportion of daily primary production and hence were presumably able to limit the rate of further accumulation of phytoplankton, or even to prevent it. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A model is developed to investigate the trade-offs between benefits and costs involved in zooplanktonic diel vertical migration (DVM) strategies. The 'venturous revenue' (VR) is used as the criterion for optimal trade-offs. It is a function of environmental factors and the age of zooplankter. During vertical migration, animals are assumed to check instantaneously the variations of environmental parameters and thereby select the optimal behavioral strategy to maximize the value of VR, i.e. taking up as much food as possible with a certain risk of mortality. The model is run on a diel time scale (24 h) in four possible scenarios during the animal's life history. The results show that zooplankton can perform normal DVM balancing optimal food intake against predation risk, with the profile of DVM largely modified by the age of zooplankter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Elemental (TOC, TN, C/N) and stable carbon isotopic (delta(13)C) compositions and n-alkane (nC(16-38)) concentrations were measured for Spartina alterniflora, a C-4 marsh grass, Typha latifolia, a C-3 marsh grass, and three sediment cores collected from middle and upper estuarine sites from the Plum Island salt marshes. Our results indicated that the organic matter preserved in the sediments was highly affected by the marsh plants that dominated the sampling sites. delta(13)C values of organic matter preserved in the upper fresh water site sediment were more negative (-23.0+/-0.3) as affected by the C-3 plants than the values of organic matter preserved in the sediments of middle (-18.9+/-0.8) and mud flat sites (-19.4+/-0.1) as influenced mainly by the C4 marsh plants. The distribution of n-alkanes measured in all sediments showed similar patterns as those determined in the marsh grasses S. alterniflora and T. latifolia, and nC(21) to nC(33) long-chain n-alkanes were the major compounds determined in all sediment samples. The strong odd-to-even carbon numbered n-alkane predominance was found in all three sediments and nC(29) was the most abundant homologue in all samples measured. Both delta(13)C compositions of organic matter and n-alkane distributions in these sediments indicate that the marsh plants could contribute significant amount of organic matter preserved in Plum Island salt marsh sediments. This suggests that salt marshes play an important role in the cycling of nutrients and organic carbon in the estuary and adjacent coastal waters. (C) 2003 Elsevier Ltd. All rights reserved.