998 resultados para AUX framework
Resumo:
A new framework of non-local model for the strain energy density is proposed in this paper. The global strain energy density of the representative volume element is treated as a non-local variable and can be obtained through a special integral of the local strain energy density. The local strain energy density is assumed to be dependent on both the strain and the rotation-gradient. As a result of the non-local model, a new strain gradient theory is derived directly, in which the first and second strain gradients, as well as the triadic and tetradic stress, are introduced in the context of work conjugate. For power law hardening materials, size effects in thin metallic wire torsion and ultra-thin cantilever beam bend are investigated. It is found that the result predicted by the theoretical model is well consistent with the experimental data for the thin wire torsion. On the other hand, the calculation result for the micro-cantilever beam bend clearly shows the size effect.
Resumo:
Science & Technology Basic Work Program of China: Scientific Survey of the Middle-lower Reaches of Lantsang River and the Great Shangri-La Region [2008FY110300]; National Basic Research Program of China (973 Program): Ecosystem Services and Ecological Safety of the Major Terrestrial Ecosystems of China [2009CB421106]; National Natural Science Foundation of China [30670374]; EU ; European Commission, DG Research [003874]
Resumo:
The reactions of sodium p-sulfonatocalix[4]arene (Na5L) and terbium/europium(III) chloride in the presence of pyrazine-N,N'-dioxide (PNNO) in aqueous solutions gave the crystalline complexes 1 and 2. Both structures contain molecular capsules of p-sulfonatocalix[4] arene with PNNO as guest molecules in the cavity of the calix[4]arenes. The molecular capsules are connected through sodium and terbium (or europium) centers forming a three-dimensional framework.
Resumo:
We established a theoretical framework for studying nonequilibrium networks with two distinct natures essential for characterizing the global probabilistic dynamics: the underlying potential landscape and the corresponding curl flux. We applied the idea to a biochemical oscillation network and found that the underlying potential landscape for the oscillation limit cycle has a distinct closed ring valley (Mexican hat-like) shape when the fluctuations are small. This global landscape structure leads to attractions of the system to the ring valley.
Resumo:
A novel metal-organic framework [Cu-3(m-TATB)(2)Py(CH3OH)(2)] (1) constructed of a triazine-based trigonal-planar ligand, 3,3',3 ''-s-triazine-2,4,6- triyltribenzoate (m-H(3)TATB), has been synthesized and structurally characterized. Compound 1 features three-dimensional (3D) channels and cavities together, and exhibits high carbon dioxide sorption at normal pressure.
Resumo:
A new magnesium metal-organic framework (MOF) based on an asymmetrical ligand, biphenyl-3,4',5-tricarboxylate (H3PT) has been synthesized and structurally characterized. MOF Mg-3(BPT)(2)(H2O)(4) (1) consists of 10 hexagonal nanotube-like channels and exhibits pronounced hydrogen-sorption hysteresis at medium pressure.