995 resultados para ATM Networks


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the last century, the silicon revolution has enabled us to build faster, smaller and more sophisticated computers. Today, these computers control phones, cars, satellites, assembly lines, and other electromechanical devices. Just as electrical wiring controls electromechanical devices, living organisms employ "chemical wiring" to make decisions about their environment and control physical processes. Currently, the big difference between these two substrates is that while we have the abstractions, design principles, verification and fabrication techniques in place for programming with silicon, we have no comparable understanding or expertise for programming chemistry.

In this thesis we take a small step towards the goal of learning how to systematically engineer prescribed non-equilibrium dynamical behaviors in chemical systems. We use the formalism of chemical reaction networks (CRNs), combined with mass-action kinetics, as our programming language for specifying dynamical behaviors. Leveraging the tools of nucleic acid nanotechnology (introduced in Chapter 1), we employ synthetic DNA molecules as our molecular architecture and toehold-mediated DNA strand displacement as our reaction primitive.

Abstraction, modular design and systematic fabrication can work only with well-understood and quantitatively characterized tools. Therefore, we embark on a detailed study of the "device physics" of DNA strand displacement (Chapter 2). We present a unified view of strand displacement biophysics and kinetics by studying the process at multiple levels of detail, using an intuitive model of a random walk on a 1-dimensional energy landscape, a secondary structure kinetics model with single base-pair steps, and a coarse-grained molecular model that incorporates three-dimensional geometric and steric effects. Further, we experimentally investigate the thermodynamics of three-way branch migration. Our findings are consistent with previously measured or inferred rates for hybridization, fraying, and branch migration, and provide a biophysical explanation of strand displacement kinetics. Our work paves the way for accurate modeling of strand displacement cascades, which would facilitate the simulation and construction of more complex molecular systems.

In Chapters 3 and 4, we identify and overcome the crucial experimental challenges involved in using our general DNA-based technology for engineering dynamical behaviors in the test tube. In this process, we identify important design rules that inform our choice of molecular motifs and our algorithms for designing and verifying DNA sequences for our molecular implementation. We also develop flexible molecular strategies for "tuning" our reaction rates and stoichiometries in order to compensate for unavoidable non-idealities in the molecular implementation, such as imperfectly synthesized molecules and spurious "leak" pathways that compete with desired pathways.

We successfully implement three distinct autocatalytic reactions, which we then combine into a de novo chemical oscillator. Unlike biological networks, which use sophisticated evolved molecules (like proteins) to realize such behavior, our test tube realization is the first to demonstrate that Watson-Crick base pairing interactions alone suffice for oscillatory dynamics. Since our design pipeline is general and applicable to any CRN, our experimental demonstration of a de novo chemical oscillator could enable the systematic construction of CRNs with other dynamic behaviors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A grating-lens combination unit is developed to form a scaling self-transform function that can self-image on scale. Then an array of many such grating-lens units is used for the optical interconnection of a two-dimensional neural network, and experiments are carried out. We find that our idea is feasible, the optical interconnection system is simple, and optical adjustment is easy. (C) 1998 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nowadays, enterprises, and especially SMEs, are immersed in a very difficult economic situation. Therefore, they need new and innovative tools to compete in that environment. Integration of the internet 2.0 and social networks in marketing strategies of companies could be the key to success. If social networks are well managed, they can bring a lot to enterprise plans. Moreover, social networks are very attractive from an economic point of view as companies can find most of their customers on it.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

E2F1 and E2F2 transcription factors have an important role during the regulation of cell cycle. In experiments done with E2F1/E2F2 knockout mice, it has been described that bone-marrow-derived macrophages (BMDM) undergo an early rapid proliferation event related to DNA hyper-replication. As a consequence, DNA damage response (DDR) pathway is triggered and E2F1/E2F2 knockout macrophages enter premature senescence related to G2/M phase arrest. The exact mechanism trough which DNA hyper-replication leads to DDR in absence of E2F1 and E2F2 remains undiscovered. To determine whether the ATR/ATM pathway, the master regulator of G2/M checkpoint, might be the surveillance mechanism in order to regulate uncontrolled proliferation in the DKO model, we monitored and analysis biochemical properties of BMDM cultures in the presence of caffeine, a potent inhibitor of ATM/ATR activity. Our results show that the addition of caffeine abolishes premature senescence in DKO BMDM, stimulates γ-H2AX accumulation and decreases Mcm2 expression.