992 resultados para ANISOTROPY


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The optical microstructures of thin sections of two liquid crystalline polymers are examined in the polarizing microscope. The polymers are random copolyesters based on hydroxybenzoic and hydroxynaphthoic acids (B-N), and hydroxybenzoic acid and ethylene terephthalate (B-ET). Sections cut from oriented samples, so as to include the extrusion direction, show microstructures in which there is no apparent preferred orientation of the axes describing the local optical anisotropy. The absence of preferred orientation in the microstructure, despite marked axial alignment of molecular chain segments as demonstrated by X-Ray diffraction, is interpreted in terms of the polymer having biaxial optical properties. The implication of optical biaxiality is that, although the mesophases are nematic, the orientation of the molecules is correlated about three (orthogonal) axes over distances greater than a micron. The structure is classified as a multiaxial nematic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report a clear transition through a reconnection layer at the low-latitude magnetopause which shows a complete traversal across all reconnected field lines during northwestward interplanetary magnetic field (IMF) conditions. The associated plasma populations confirm details of the electron and ion mixing and the time history and acceleration through the current layer. This case has low magnetic shear with a strong guide field and the reconnection layer contains a single density depletion layer on the magnetosheath side which we suggest results from nearly field-aligned magnetosheath flows. Within the reconnection boundary layer, there are two plasma boundaries, close to the inferred separatrices on the magnetosphere and magnetosheath sides (Ssp and Ssh) and two boundaries associated with the Alfvén waves (or Rotational Discontinuities, RDsp and RDsh). The data are consistent with these being launched from the reconnection site and the plasma distributions are well ordered and suggestive of the time elapsed since reconnection of the field lines observed. In each sub-layer between the boundaries the plasma distribution is different and is centered around the current sheet, responsible for magnetosheath acceleration. We show evidence for a velocity dispersion effect in the electron anisotropy that is consistent with the time elapsed since reconnection. In addition, new evidence is presented for the occurrence of partial reflection of magnetosheath electrons at the magnetopause current layer.