998 resultados para ALLOY SCATTERING


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A bulk alloy which consists of the single icosahedral quasicrystalline phase (I-phase) in Ti45Zr35Ni17CU3 alloy has been fabricated by mechanical alloying and subsequent pulse discharge sintering technique. Crystallographic structure analyses show that the bulk alloy is an I-phase. The transport properties of the bulk alloy are examined, and the results show that the room-temperature thermal conductivity is 5.347 W K-(1) m(-1), and the electrical conductivity decreases with increasing the temperature from 300 to 450K. The Seebeck coefficient is negative at the temperature range from 300 to 360K, and changes to positive from 370 to 450K. Hall effect measurements indicate the bulk I-phase alloy has a high carrier concentration. The specific heat capacity increases when the temperature increases from 280 to 324 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Icosahedral quasicrystalline Ti45Zr35Ni17Cu3 alloy was ball-milled with 30 mass% La0.9Zr0.1Ni4.5Al0.5 alloy (LaNi5 phase), the effect of the milling time on crystallographic and electrochemical characteristics of the alloy powder was investigated. The amount of amorphous phase increased with increasing milling time from 60 to 360 min, and the LaNi5 phase cannot be observed when milling time was 240 min or more. The maximum discharge capacity and high-rate dischargeability of milled alloy electrodes were obviously higher than those of the alloy electrode before milling. The cycling capacity retention rate after 40 cycles increased from 52.8% (t = 60 min) to 62.9% (t = 360 min).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mg-7 mass%Gd-x mass%Y (x = 0, 1, 3 and 5) alloys were prepared by casting method, and the microstructures, age hardening behavior and mechanical properties have been investigated. The results show that the addition of Y to the binary Mg-7Gd alloy could reduce the grain size of the as-cast alloys, and enhance the age hardening response and improve mechanical properties during the investigated temperature range. The Mg-7Gd-5Y alloy exhibits maximum ultimate tensile strength and yield strength at peak hardness, and the values are 258 and 167 MPa at room temperature, and 212 and 140 MPa at 250 degrees C, respectively, which is about 1.8 times as high as the Mg-7Gd binary alloy. When x is more than 3, the amount of Mg-5 (Gd,Y) phase is observed at the peak hardness of aged alloys. The significant improvement of the tensile strength at peak hardness is mainly attributed to the fine dispersion of the beta-Mg-5(Gd,Y) precipitate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microstructure and mechanical properties of as-cast and heat-treated Mg–12.3Zn–5.8Y–1.4Al (ZYA1261) alloy were investigated. The phase compositions of the as-cast alloy are -Mg, Mg3YZn6 (I-phase), Mg3Y2Zn3 (W-phase), Mg12YZn (Z-phase), Mg24Y5, MgZn and a small quantity of Al-containing phase. The phase compositions change with various heat treatment conditions. The highest Vickers hardness is obtained in the alloy aged at 200 ◦C for 5 h, the transmission electron microscopy indicated that fine scale Z-phase precipitates in the matrix. The tensile properties of the as-cast and heat-treated alloys were reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mg-20Zn-8Al-xCe(x=0-2 wt.%) alloys were prepared by metal mould casting method, the effects of Ce on the microstructure and mechanical properties of the alloys were investigated. The results showed that the dendrite as well as gram size were refined by the addition of Ce, and the best refinement was obtained in 1.39% Ce containing alloy. The main phases in the as cast alloys were alpha-Mg and tau-Mg-32 (Al, Zn)(49), and Al4Ce phase was found in the alloys contained more than 1.39% Ce. The addition of Ce improved the mechanical properties of the alloys. The strengthening mechanism was attributed to grain refinement and compound reinforced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Mg-8Zn-8Al-4RE (RE = mischmetal, mass%) magnesium alloy was prepared by using casting method. The microstructure and mechanical properties of as-cast alloy, solid solution alloy and aged alloy samples have been investigated. Optical microscopy, X-ray diffractometery and scanning electron microscope attached energy spectrometer were used to characterize the microstructure and phase composition for the alloy. Net shaped tau-Mg-32(Al,Zn)(49) phase was obtained at the grain boundary, and needle-like or blocky Al11RE3 phase disperses in grain boundary and alpha-Mg matrix. The tau-Mg-32(Al,Zn)(49) phase disappeared during solution treatment and a new phase of Al(2)CeZn2 formed during subsequent age treatment. The mechanical properties were performed by universal testing machine at room temperature, 150 degrees C and 200 degrees C, separately. The ultimate tensile strength of as-cast alloy is lower compared to an age treatment alloy at 200 degrees C for 12h. The strengths decreased with enhancing test temperature, but elongation has not been effect by age treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a one-pot preparation method for a series of novel shaped gold microcrystals by simply mixing HAuCl4 with disodium salt of ethylenediaminetetraacetic acid (Na(2)EDTA). Under the different reaction temperatures, spinous structures, multipod microspheres, and rough surfaced microspheres were obtained. These microcrystals exhibit high surface-enhanced Raman scattering (SERS) activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural evolution of high-density polyethylene subjected to uniaxial tensile deformation was investigated as a function of strain and after annealing at different temperatures using a scanning synchrotron small-angle X-ray scattering (SAXS) technique. The results confirm that in the course of tensile deformation intralamellar block slips were activated at small deformations followed by a stress-induced fragmentation and recrystallization process yielding thinner lamellae with their normal parallel to the stretching direction. The original sheared lamellae underwent severe internal deformation so that they were even less stable than the newly developed thinner lamellae. Accordingly, annealing results in a melting of the original crystallites even at moderate strains where the stress-induced fragmentation and recrystallization just sets in and generates a distinctly different form of lamellar stacks aligned along the drawing direction. It was found that the lamellae newly formed during stretching at moderate strains remain stable at lower temperature. Only at a very high annealing temperature of 120 degrees C can they be melted, leading to an isotropic distribution of the lamellar structure.