992 resultados para 869[81].09


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Australian native freshwater fish Murray cod, Maccullochella peelii pellii (Mitchell), currently supports a fledgling inland aquaculture industry, which is thought to have considerable growth potential. The aim of this study was to evaluate the suitability of two alternate protein sources [blood meal (BM) and defatted soybean meal (SBM)] as substitutes for fish meal at various levels of inclusion in diets for juvenile Murray cod. The growth performance of juvenile Murray cod in response to nine isonitrogenous and isocalorific diets (50% protein, 14% lipid, 20.2 kJ g−1) consisting of a control diet in which protein was supplied from fish meal, and test diets in which the fish meal protein was substituted at levels of 8%, 16%, 24%, and 32% with BM or SBM was evaluated from a 70-day growth experiment. The per cent apparent dry matter (% ADCdm) and percentage protein digestibility (% ADCp) of the test diets were also determined using Cr2O3 as a marker. Survival in all the SBM dietary treatments was high but that of fish on the BM dietary treatments was significantly (P < 0.05) lower than in all the other dietary treatments. Specific growth rate (% day−1) of Murray cod fed SBM incorporated diets ranged from 1.63 ± 0.06 to 1.78 ± 0.10 and even at the highest level tested (32% of the dietary protein from SBM) was not significantly different (P > 0.05) from the fish fed the control diet (1.65 ± 0.09). Feed conversion ratios of the SBM dietary treatments ranged from 1.36 ± 0.08 to 1.45 ± 0.07. The protein efficiency ratios and protein conversion efficiencies of Murray cod in the soybean meal treatments were also good and for a majority of the SBM diets were better than those for the control diet. Per cent ADCdm and ADCp of the SBM diets tested ranged from 70.6 ± 1.46 to 72.3 ± 1.81% and 88.6 ± 0.57 to 90.3 ± 0.17%, respectively, and was not significantly different (P > 0.05) from the control diet (% ADCdm 74.3 ± 1.63; % ADCp 91.3 ± 0.55). The reasons for significantly poor survival and growth of Murray cod reared on BM incorporated diets, and relatively poor digestibility of these diets are discussed. The study shows that for Murray cod diets in which fish meal protein is substituted up to 32% performance or carcass composition is not compromised.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The changes in proximate composition, amino acid (total and free) and fatty acid content of artificially propagated trout cod, Maccullochella macquariensis larvae from five mothers hatched, weaned and reared separately, each in two groups, one fed with Artemia naupli and the other starved, for 15 days (after yolk resorption), are presented. There was no significant change in the proximate composition of fed larvae with devlopment, but in starved larvae the protein (linearly) and lipid (curvi-linearly) content decreased significantly as starvation progressed. The essential amino acids (EAA) and non- essential amino acids (NEAA) found in highest amounts in trout cod larvae were lysine, leucine, threonine and arginine, and alanine, serine and glutamic acid, respectively. In fed larvae the total amino acid (TAA), TEAA and TNEAA content did not vary significantly as development progressed. In starved larvae the TAA, EAA and NEAA content, as well as all the individual amino acids decreased significantly (P<0.05) from the levels in day of hatch and/or yolk-sac resorbed larvae. The greatest decrease occurred in the TEAA content (7.38±0.76 at day of hatch to 1.96±0.09 15 day starved in μmoles larva–1; approximately a 74% decrease), whereas the decrease in TNEAA was about 38%. Unlike in the case of TAA distinct changes in the free amino acid (FAA) pool were discernible, from day of hatch and onwards, in both fed and starved trout cod larvae. In both groups of larvae the most noticeable being the decrease of % FEAA in TFAA, but not the % FAA in TAA. Four fatty acids together, accounted for more than 50% of the total in each of the major fatty acid categories in all larvae sampled; 16: 0, 18:1n-9, 22: 6n-3 and 20: 4n-6, amongst saturates, monoenes, n-3 PUFA and n-6 PUFA, respectively. Twelve fatty acids either decreased (14: 0, 16: 1n-7, 20: 1n-9, 20: 4n-6, 20: 5n-3, 22: 5n-3 and 22: 6n-3) or increased (18: 2n-6, 18: 3n-3, 18: 3n-6, 18: 4n-3 and 20: 3n-3) in quantity, after 15 days of feeding, from the base level in day of hatch and/ or yolk- sac resorbed larvae. The greatest increase occurred in 18: 3n-3 from 6.4±0.1 to 106.2±13.1 μg mg lipid–1 larva–1, and the greatest decrease occurred in 22: 6n-3 (181.2±12.4 to 81.4±6.2 μg mg lipid–1 larva–1). In starved larvae, at the end of 15 days, all the fatty acids, except 18: 0, 20: 3n-3 and 20: 4n-6, decreased significantly (P<0.05) from the levels in day of hatch and/or yolk- sac resorbed larvae.