994 resultados para 7137-125
Resumo:
The aim of this study was to examine the effect of endurance training on skeletal muscle phospholipid molecular species from high-fat fed rats. Twelve female Sprague-Dawley rats were fed a high-fat diet (78.1% energy). The rats were randomly divided into two groups, a sedentary control group and a trained group (125 min of treadmill running at 8 m/min, 4 days/wk for 4 weeks). Forty-eight hours after their last training bout phospholipids were extracted from the red and white vastus lateralis and analyzed by electrospray-ionization mass spectrometry. Exercise training was associated with significant alterations in the relative abundance of a number of phospholipid molecular species. These changes were more prominent in red vastus lateralis than white vastus lateralis. The largest observed change was an increase of similar to 30% in the abundance of 1-palmitoyl-2-linoleoyl phosphatidylcholine ions in oxidative fibers. Reductions in the relative abundance of a number of phospholipids containing long-chain n-3 polyunsaturated fatty acids were also observed. These data suggest a possible reduction in phospholipid remodeling in the trained animals. This results in a decrease in the phospholipid n-3 to n-6 ratio that may in turn influence endurance capacity.
Resumo:
Design process phases of development, evaluation and implementation were used to create a garment to simultaneously collect reliable data of speech production and intensity of movement of toddlers (18-36 months). A series of prototypes were developed and evaluated that housed accelerometer-based motion sensors and a digital transmitter with microphone. The approved test garment was a top constructed from loop-faced fabric with interior pockets to house devices. Extended side panels allowed for sizing. In total, 56 toddlers (28 male; 28 female; 16-36 months of age) participated in the study providing pilot and baseline data. The test garment was effective in collecting data as evaluated for accuracy and reliability using ANOVA for accelerometer data, transcription of video for type of movement, and number and length of utterances for speech production. The data collection garment has been implemented in various studies across disciplines.
Resumo:
Muscle invasive transitional cell carcinoma (TCC) of the bladder is associated with a high frequency of metastasis, resulting in poor prognosis for patients presenting with this disease. Models that capture and demonstrate step-wise enhancement of elements of the human metastatic cascade on a similar genetic background are useful research tools. We have utilized the transitional cell carcinoma cell line TSU-Pr1 to develop an in vivo experimental model of bladder TCC metastasis. TSU-Pr1 cells were inoculated into the left cardiac ventricle of SCID mice and the development of bone metastases was monitored using high resolution X-ray. Tumor tissue from a single bone lesion was excised and cultured in vitro to generate the TSU-Pr1-B1 subline. This cycle was repeated with the TSU-Pr1-B1 cells to generate the successive subline TSU-Pr1-B2. DNA profiling and karyotype analysis confirmed the genetic relationship of these three cell lines. In vitro, the growth rate of these cell lines was not significantly different. However, following intracardiac inoculation TSU-Pr1, TSU-Pr1-B1 and TSU-Pr1-B2 exhibited increasing metastatic potential with a concomitant decrease in time to the onset of radiologically detectable metastatic bone lesions. Significant elevations in the levels of mRNA expression of the matrix metalloproteases (MMPs) membrane type 1-MMP (MT1-MMP), MT2-MMP and MMP-9, and their inhibitor, tissue inhibitor of metalloprotease-2 (TIMP-2), across the progressively metastatic cell lines, were detected by quantitative PCR. Given the role of MT1-MMP and TIMP-2 in MMP-2 activation, and the upregulation of MMP-9, these data suggest an important role for matrix remodeling, particularly basement membrane, in this progression. The TSU-Pr1-B1/B2 model holds promise for further identification of important molecules.
Resumo:
The alkaline perhydrolysis of the nerve agent O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (VX) was investigated by studying the ion-molecule reactions of HOO(-) with O,S-dimethyl methylphosphonothioate in a modified linear ion-trap mass spectrometer. In addition to simple proton transfer, two other abundant product ions are observed at m/z 125 and 109 corresponding to the S-methyl methylphosphonothioate and methyl methylphosphonate anions, respectively. The structure of these product ions is demonstrated by a combination of collision-induced dissociation and isotope-labeling experiments that also provide evidence for their formation by nucleophilic reaction pathways, namely, (i) S(N)2 at carbon to yield the S-methyl methylphosphonothioate anion and (ii) nucleophilic addition at phosphorus affording a reactive pentavalent intermediate that readily undergoes internal sulfur oxidation and concomitant elimination of CH(3)SOH to yield the methyl methylphosphonate anion. Consistent with previous Solution phase observations of VX perhydrolysis, the toxic P-O cleavage product is not observed in this VX model system and theoretical calculations identify P-O cleavage to be energetically uncompetitive. Conversely, intramolecular sulfur oxidation is calculated to be extremely exothermic and kinetically accessible explaining its competitiveness with the facile gas phase proton transfer process. Elimination of a sulfur moiety deactivates the nerve agent VX and thus the intramolecular sulfur oxidation process reported here is also able to explain the selective perhydrolysis of the nerve agent to relatively nontoxic products.