997 resultados para 290899 Civil Engineering not elsewhere classified
Resumo:
Timinganalysis of assembler code is essential to achieve the strongest possible guarantee of correctness for safety-critical, real-time software. Previous work has shown how timingconstrain ts on controlflow paths through high-level language programs can be formalised using the semantics of the statements comprisingthe path. We extend these results to assembler-level code where it becomes possible to not only determine timingconstrain ts, but also to verify them against the known execution times for each instruction. A minimal formal model is developed with both a weakest liberal precondition and a strongest postcondition semantics. However, despite the formalism’s simplicity, it is shown that complex timingb ehaviour associated with instruction pipeliningand iterative code can be modelled accurately.
Resumo:
In this paper we discuss the refinement of exceptions. We extend the Guarded Command Language normally used in the refinement calculus, with a simple exception handling statement, which we model using King and Morgan's exit statement (1995). We derive some variants of King and Morgan's refinement laws for their exit statement, and illustrate the approach with an example of a refinement of a simple program.
Resumo:
A number of integrations of the state-based specification language Object-Z and the process algebra CSP have been proposed in recent years. In developing such integrations, a number of semantic decisions have to be made. In particular, what happens when an operation's precondition is not satisfied? Is the operation blocked, i.e., prevented from occurring, or can it occur with an undefined result? Also, are outputs from operations angelic, satisfying the environment's constraints on them, or are they demonic and not influenced by the environment at all? In this paper we discuss the differences between the models, and show that by adopting a blocking model of preconditions together with an angelic model of outputs one can specify systems at higher levels of abstraction.
Resumo:
Two types of semantics have been given to object-oriented formal specification languages. Value semantics denote a class by a set of values representing its objects. Reference semantics denote a class by a set of references, or pointers, to values representing its objects. While adopting the former facilitates formal reasoning, adopting the latter facilitates transformation to object-oriented code. In this paper, we propose a combined approach using value semantics for abstract specification and reasoning, and then refining to a reference semantics before transforming specification to code.