994 resultados para 250601 Quantum Chemistry
Resumo:
This thesis presents analytical and numerical results from studies based on the multiple quantum well laser rate equation model. We address the problem of controlling chaos produced by direct modulation of laser diodes. We consider the delay feedback control methods for this purpose and study their performance using numerical simulation. Besides the control of chaos, control of other nonlinear effects such as quasiperiodicity and bistability using delay feedback methods are also investigated.A number of secure communication schemes based on synchronization of chaos semiconductor lasers have been successfully demonstrated theoretically and experimentally. The current investigations in these field include the study of practical issues on the implementations of such encryption schemes. We theoretically study the issues such as channel delay, phase mismatch and frequency detuning on the synchronization of chaos in directly modulated laser diodes. It would be helpful for designing and implementing chaotic encryption schemes using synchronization of chaos in modulated semiconductor lasers.
Resumo:
Sulphur is a non conservative major element and is the most active species in the redox processes in nature, especially in aquatic environment . The varying oxidative states from-2 to +6 make it possible to enter into many of the biogeochemical processes. Thus the history, present and future of the chemical composition and behaviour of the natural aquatic systems and sediments have footprints of the sulphur chemistry.Mangroves are considered to be the most productive, fishery supportive ecosystem operating in the intertidal regions. The interlinking of the mangroves with the sulphur chemistry is attempted here.
Resumo:
The dual-beam thermal lens technique has been found to be very effective for the measurement of fluorescence quantum yields of dye solutions. The concentration-dependence of the quantum yield of rhodamine B in methanol is studied here using this technique. The observed results are in line with the conclusion that the reduction in the quantum yield in the quenching region is essentially due to the non-radiative relaxation of the absorbed energy. The thermal lens has been found to become abberated above 40 mW of pump laser power. This low value for the upper limit of pump power is due to the fact that the medium is a resonantly absorbing one.