993 resultados para 193-1190


Relevância:

10.00% 10.00%

Publicador:

Resumo:

作者以海湾扇贝胚胎和幼虫为材料,研究了氨氮的毒性影响。氨氮对海湾扇贝胚胎孵化率为EC50为1.97ppm总氨氮(相当于0.094ppm非离子氨)。氨氮对早D形幼虫、平均壳长110μ的D形幼虫和壳顶幼虫的96小时LC50分别为6.33、7.84和5.25总氨氮(相当于0.302、0.374和0.251ppm非离子氨)。氨氮对幼虫生长、眼点发生和变态的EC50分别为4.04、2.10和2.67ppm总氨氮(相当于0.193、0.10和0.127ppm非离子氨)。实验结果表明,海湾扇贝早期D形幼虫对氨氮毒性的耐受力比壳长较大的D形幼虫的耐受力低,但壳顶幼虫的耐受力最低。海湾扇贝在胚胎发育期和幼虫眼点发生与变态期对氨氮的毒性作用非常敏感。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本论文研究了胶洲湾、东海和渤海的蓝细菌(Synechococcus)、生物量、异养细菌生物量和生产力的生态学特点。并在汇泉湾、渤海和东海用分极增减法对海洋蓝细菌在微型食物环(the microbial loop)中的作用进行了初步研究。在以上海区调查研究的时间如下:胶州湾:1993年2月、5月、9月11月,1996年5月、1999年3月、5月和12月。汇泉湾:1996年4月至1998年4月。东海:1997年2-3月,1998年7月。渤海1998年9-10月,1999年4-5月。研究结果如下:胶州湾:蓝细菌生物量的变化范围是11.4-0.03 mgC/m~3,季节变化是夏季>秋季和春季>冬季。其水平分布是除夏季蓝细菌生物量是沿岸浅水区向湾外递减外,其它三季(春、秋和冬季)是由湾外向湾内至沿岸浅水区递减。蓝细菌生物量与海水温度周年变化正相关,与季节海水温度的关系是秋、冬季分布变化一致,春、夏季分布变化相反。海水温度是影响胶州湾蓝细菌生物量分布变化的主要原因。异养细菌生物量和生产力的变化范围分别是29.8-1.62 mgC/m~3; 129.12-1.92 mgC/m~3.d。季节变化都是夏季>秋季、春季>冬季。夏季的异养细菌生物量和生产力水平分布趋势与蓝细菌生物量的分布变化相同。海水温度对异养细菌生产力的影响较对异养细菌生物量的影响大。异养细菌生产力相比(BP:PP)的变化在0.58-0.02之间,季节分布变化是夏季>秋季、春季>冬季。夏季表层的BP:PP由沿岸浅水区向湾心、湾口和湾外递减。东海:蓝细菌生物量的变化范围是46.72-0.011 mgC/m~3,夏季高平均是23.59 mgC/m~3,冬季低平均是3.61 mgC/m~3。冬季蓝细菌生物量的水平分布明显受黑潮的影响,在表面和20米层是由东南向西北方向递减。其垂直分布是冬季表层和20米层>底层,夏季是20米层>表层>底层;在连续站冬111站和410站变化都是中层>底层>表层。异养细菌生物量和生产力的变化范围分别是17.2-4.4 mgC/m~3(1997.2);376.8-7.2 mgC/m~3.d。异养细菌生产力夏季高平均是35.1 mgC/m~3.d。异养细菌生物量的水平分布是由沿岸向外海递增(1997.2),异养细菌生产力的水平分布是冬季异养细菌生产力在32度断面有由沿岸向外递减趋势,PN断面的变化与冬季相似。垂直分布,冬季和夏季的异养细菌生产力的垂直变化在2断面是底层大于表面,PN断面则是表层大于底层,32度断面大多断站是底层大于表层。在连续站冬季111站异养细菌生产力的变化是底层>中层>表层,409站的变化是中层>底层>表层,夏季111站和410站都是中>底层>表层。异养细菌生物量(1997.2)表层分布变化与海水温度分布变化相似,底层变化相反。异养细菌生产力与初级生产力相比(BP:PP),冬季在0.04-0.30之间,平均为0.17;夏季在0.20-0.43之间平均0.32。冬季在长江口附近BP:PP有一个高值区是0.30,夏季在111站附近有一个高值区是0.43。从连续站111站和409’站观测发现底层的BP:PP明显高于表层。渤海:蓝细菌生物量秋季(16.6-0.37 mgC/m~3)比春季(0.44-0.015 mgC/m~3)高。其秋季的水平分布与海水盐度水平分布相同,与海水温度水平分布相反。异养细菌生产力秋季(189-62.2 mgC/m~3.d)与春季(193.2-49.8 mgC/m~3.d)相当。但秋季捕层BP普遍小于底层,而春季是表层普遍大于底层。根据颗粒分级培养实验结果,海洋蓝图细菌在微型食物环中的作用如下:在汇泉湾的春季和秋季蓝细菌可能主要被小型浮游动物(microzooplankton 20-200 μm)捕食。在渤海的春季和秋季也是同样结果。但在东海夏季的111站和410站附近(东海大陆架中部)微型浮游动物(nanozooplankton 2-20 μm)对蓝细菌的捕食压力明显。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

能量代谢指动物在进行生理活动(如摄食、消化以及动物的活动等)时所消耗能量的总和,一般以动物的呼吸率利排泄率来估计动物的能量代谢。其主要研究内容是闸明生物能量代谢的基木规律以及与环境闪子的关系。菲律宾蛤仔(Ruditapesphil ippmarum)是我国一种重要的养殖贝类,关于其能量代谢的研究却较少,这种状况妨碍了菲律宾蛤仔养殖生态理论的完善和养殖技术的提高。本研究主要对菲律宾蛤仔呼吸率和排泄率的基本规律(能量代谢与体重的关系、能量代谢的昼夜变化)及其与环境因子(饵料浓度、水温、栖息底质环境)的关系进行探讨。研究结果如下:1.不同体重菲律宾蛤仔代谢率小同。实验川菲律宾蛤仔分三种大小:l(干肉重为0.07-0.14g)、ll(干肉重0.27-0.34g)、III(干肉重0.45~0.63g)。温度包括:26℃(八月)、20℃(十月)、1 5℃(十二月)、9℃(一月)。实验共设四个饵料浓度:2.28±0.25,6.454±0.44,10.284±0.82,15.414±1.56mgTPM/L(TPM,总颗粒物),饵料中POM(颗粒有机物)含量都为4.68±1.64 mg/L。常温下菲律宾蛤仔代谢率随着体重的增大而增大。15℃、20~C、26℃时蛤仔呼吸率与干肉重呈明显的幂函数关系R=aW~b,a值变动范围为0.1076-0.3309;b值变动范围为0.239l~0.8381;蛤仔排泄率与干肉重也呈明显的幂函数关系N=aW~b,a值变动范围为14.213~68.362:b值变动范围为0.3673-1.1 532。9℃(饵料浓度为2.28±0.25mgTPM/L)、20℃(饵料浓度为10.284-0.82mgTPM/L)、26℃(饵料浓度为6.454±0.44mgTPM/L)时不同体重蛤仔氧氮比差异显著,其它情况下不同体重蛤仔氧氮比差异不显著。2.常温下菲律宾蛤仔代谢率受饵料浓度的影响,不同大小蛤仔受饵料浓度的影响程度不同。I组蛤仔呼吸率受饵料浓度的显著影响,II组III组蛤仔呼吸率只在9℃(一月)和26~C(八月)时受饵料浓度的显著影响。26℃时影响最显著,26℃时I组蛤仔在饵料浓度为2.28±0.25,6.45±0.44,l0.28±0.82,15.4l±1.56mgTPM/L时呼吸率分别是O.086,0.146,0.073,0.093(mlO_2/h);ll组蛤仔在上述浓度饵料中呼吸率分别是0.138,0.214,0.J 26,0.12l(mlO_2/h);III组蛤仔在上述浓度饵料中呼吸率分别是0.129,0.266,0.186,0.192(mlO_2/h)。菲律宾蛤仔呼吸率在饵料浓度为6.45±0.44 mgTPM/L时最高,蛤仔呼吸率在其它饵料浓度时都会降低。菲律宾蛤仔排泄率在饵料浓度为10.28±0.82 mgTPM/L和15.4l士1.56mgTPM/L时显著高于其它浓度组,9℃时这种趋势更明显,9℃时饵料浓度为2.28±0.25,6.454±044,lO.284±0.82,15.41±1.56mgTPM/L中I组蛤仔排泄率分别是4.297,2.874,8.003,6.658(μgNH_3-N/h);II组蛤仔在上述浓度饵料中排泄率分别是4.011,3.609,10.427,12.732(μgNH_3-N/h);III组蛤仔在上述浓度饵料中排泄率分别是2.28 l,6.452,10.283,15.417(μgNH_3-N/h)。3.菲律宾蛤仔代谢率受自然温度的显著影Ⅱ向。I组蛤仔在9℃、15℃、20℃、26℃时呼吸率平均为0.057,0.085,0.039,O.099;II组蛤仔在上述四个温度中呼吸率平均为0.08,O.128,0.089,0.149(mlO_2/h),I组和II组蛤仔在9℃和20~C时呼吸率较低,在26℃时呼吸率最高。III组蛤仔在上述四个温度中呼吸率平均为0.09,O.1 59,O.143,O.193(mlO_2/h),在9℃时llI组蛤仔呼吸率显著低于其它温度组。温度为9℃、15℃、20℃、26℃时l组蛤仔排泄率平均为5.458,13.169,4.946,11.138(μgNH_3-N/h):II组蛤仔在上述温度中排泄率平均为7.695,23.578,8.319,23.90l(μgNH_3-N/h);III组蛤仔在上述温度中排泄率平均为11.738,27.443,15.658,35.407(μgNH_3-N/h),蛤仔排泄率在15℃和26℃时均高于9℃和20℃。4.摄食状态与饥饿状态菲律宾蛤仔代谢率有明显不同。26℃时蛤仔静止状态呼吸率平均为0.336(m102/g干重.h),摄食状态呼吸率平均为0.656(ml0_2干重.h),摄食状态呼吸率比静止状态平均升高了0 32(ml0_2/g干重.h);26℃时蛤仔静止状态排泄率平均为39.471(μgNH_3-N/g干重.h),摄食状态排泄率平均为88.08(μgNH_3-N/g干重.h),摄食状态排泄率比静止状态排泄率平均升高了48.6(μgNH_3-N/g干重.h)。摄食状态代谢率平均是静止状态的2~3倍。根据摄食引起的呼吸率和排泄率升高量得出每氧化产生lμgNH_3-N需0_2量平均为7.05μl。5.人工控制温度对菲律宾蛤仔代谢率有明显影响。不同大小蛤仔受温度的影响程度不同。在温度5℃、10℃、l 5℃、20℃、26℃,I组和II组蛤仔呼吸率都随着温度的升高而升高,在10℃~l5℃和20℃~26℃这二个温度变化范围内呼吸率变化最大,在20℃~26℃时I组蛤仔呼吸率变动范围为O.85~1.04(m10_2/g干重.h)、II组蛤仔变动范围为0.57~0.86(ml0_2/g干重.h)。III组蛤仔呼吸率只在5℃~l0℃时明显增高,变动范围为0.09~0.5l(m10_2/g干重.h),在10℃~26℃范围内变化不大。I组和II组蛤仔排泄率随着温度的升高而升高,变动幅度较大,在5℃~26℃范围内其排泄率变动范围为10.32~81.53(μgNH_3-N/g干重.h);而 III组蛤仔排泄率只在5℃~15℃时随着温度的升高而升高,其排泄率变动范围为6.75~23.77(μgNH_3-N/g干重.h),在15℃~26℃范围内几乎不变。III组蛤仔的适温范围比I组和II组蛤仔广。菲律宾蛤仔在5℃和10℃时氧氮比变化明显,变动范围为2.76~11.44,在15~26℃时变化不大。6.菲律宾蛤仔代谢率有明显的日节律性,呈正弦曲线型变化。蛤仔夜问代谢率明显升高。I组蛤仔夜间呼吸率平均为0.867(m10_2/g干重.h),白天呼吸率平均为O.504(m10_2/g干重.h);II组蛤仔夜间呼吸率平均为0.438(m10_2/g干重.h),白天呼吸率平均为0.36l(m102/g干重.h);III组蛤仔夜间呼吸率平均为0.409(m10_2/g干重.h),白天呼吸率平均为0.252(m102/g干重.h)。在22:00-23:00菲律宾蛤仔呼吸率最高。7.底质环境对菲律宾蛤仔的代谢率有明显影响。在饥饿状态下菲律宾蛤仔在泥沙底质中呼吸率平均为l 406(m10_2/g干重h),在无泥沙环境中呼吸率平均为O.963(ml0_2/g干重.h);摄食状态下菲律宾蛤仔在泥沙底质中呼吸率平均为1.59l(m102/g干重.h),在无泥沙环境中呼吸率平均为1.115(m10_2/g干重.h)。在饥饿状态下菲律宾蛤仔在泥沙底质中排泄率平均为78.934(μgNH_3-N/g 干重.h),在无泥沙环境巾排泄率平均为45.043(μgNH_3-N/g干重.h);摄食状态下菲律宾蛤仔在泥沙底质中排泄率平均为87.12l(μgNH_3-N/g干重.h),在无泥沙底质中排泄率平均为58.354(μgNH_3-N/g干重.h)。蛤仔在泥沙环境中呼吸率和排泄率都明显升高。