992 resultados para 188-1165B
Resumo:
The filamentous brown alga Ectocarpus has a complex life cycle, involving alternation between independent and morphologically distinct sporophyte and gametophyte generations. In addition to this basic haploid–diploid life cycle, gametes can germinate parthenogenetically to produce parthenosporophytes. This article addresses the question of how parthenosporophytes, which are derived from a haploid progenitor cell, are able to produce meiospores in unilocular sporangia, a process that normally involves a reductive meiotic division.
We used flow cytometry, multiphoton imaging, culture studies and a bioinformatics survey of the recently sequenced Ectocarpus genome to describe its life cycle under laboratory conditions and the nuclear DNA changes which accompany key developmental transitions.
Endoreduplication occurs during the first cell cycle in about one-third of parthenosporophytes. The production of meiospores by these diploid parthenosporophytes involves a meiotic division similar to that observed in zygote-derived sporophytes. By contrast, meiospore production in parthenosporophytes that fail to endoreduplicate occurs via a nonreductive apomeiotic event.
Our results highlight Ectocarpus’s reproductive and developmental plasticity and are consistent with previous work showing that its life cycle transitions are controlled by genetic mechanisms and are independent of ploidy.
Resumo:
Fluidised hot melt granulation (FHMG) is a novel granulation technique for processing pharmaceutical powders. Several process and formulation parameters have been shown to significantly influence granulation characteristics within FHMG. In this study we have investigated the effect of the binder properties (binder particle size and binder viscosity) on agglomerate growth mechanisms within FHMG. Low-melting point co-polymers of polyoxyethylene–polyoxypropylene (Lutrol® F68 Poloxamer 188 and Lutrol® F127 Poloxamer 407) were used as meltable binders for FHMG, while standard ballotini beads were used as model fillers for this process. Standard sieve analysis was used to determine the size distribution of granules whereas we utilised fluorescence microscopy to investigate the distribution of binder within granules. This provided further insight into the growth mechanisms during FHMG. Binder particle size and viscosity were found to affect the onset time of granulation. Agglomerate growth achieved equilibrium within short time-scales and was shown to proceed by two competing processes, breakage of formed granules and re-agglomeration of fractured granules. Breakage was affected by the initial material properties (binder size and viscosity). When using binder with a small particle size (<250 µm), agglomerate growth via a distribution mechanism dominated. Increasing the binder particle size shifted the granulation mechanism such that agglomerates were formed predominantly via immersion. A critical ratio between binder diameter and filler has been calculated and this value may be useful for predicting or controlling granulation growth processes.