999 resultados para 182-1133
Resumo:
Vomiting after feeding is a symptom of gastroesophageal reflux (GER) and of eosinophilic esophagitis (EE), which are considered to be a cause of infant feeding disorder. The objective of the present study was to evaluate swallowing in children with feeding disorder manifested by vomiting after feeding. Using clinical and videofluoroscopic methods we studied the swallowing of 37 children with vomiting after feeding (mean age = 15.4 months), and of 15 healthy children (mean age = 20.5 months). In the videofluoroscopic examination the children swallowed a free volume of milk and 5 ml of mashed banana, both mixed with barium sulfate. We evaluated five swallows of liquid and five swallows of paste. The videofluoroscopic examination was recorded at 60 frames/s. Patients had difficulty during feeding, pneumonia, respiratory distress, otitis, and irritability more frequently than controls. During feeding, children with vomiting, choke were irritable, and refused food more frequently than controls, and during the videofluoroscopic examination the patients had more backward movement of the head than controls for both the liquid and paste boluses. There was no difference in the timing of oral swallowing transit, pharyngeal swallowing transit, or pharyngeal clearance between patients and controls. We conclude that children with vomiting after feeding may have difficulties in accepting feeding, although they have no alteration of oral and pharyngeal phases of swallowing.
Resumo:
Background The strongest genetic marker for psoriasis is Cw*06. Polymorphisms in the tumor necrosis factor (TNF)-alpha promoter region, especially replacement of guanine with adenine in positions -238 and -308 are related to higher TNF-alpha production and higher risk for psoriasis in Caucasoid populations, not found in Asians. We performed a case-control study of 69 patients with psoriasis type I and 70 controls, characterized clinical progression along 10-years of follow-up in mild or severe disease and determined HLA class I, II, and TNF single nucleotide polymorphisms (SNPs) -238 and -308 polymorphisms to demonstrate whether these polymorphisms may be genetic risk for susceptibility to psoriasis or severity of the disease in Brazilians. Methods Polymorphisms were identified using PCR/SSP. Alleles, genotypes, and haplotypes frequencies were compared using Fisher`s test. Results More severe disease was found in male patients. It may be suggested that alleles B*37, Cw*06, Cw*12, and DRB1*07 were associated with severe disease course, while B*57 with mild disease. No statistical difference was found between the patients and controls regarding polymorphisms frequencies in TNF SNPs. This study pointed to a higher TNF-238 G/G genotype frequency (OR: 3.21; CI: 1.06-9.71; P = 0.04) in the group with severe disease. Conclusions Polymorphisms in the TNF-alpha SNPs do not seem to be a more important genetic risk factor for psoriasis than the already known Cw*06 in Brazilian patients, but these markers may be related to clinical manifestations.
Resumo:
Sepsis is a systemic inflammatory response resulting from the inability of the host to contain the infection locally. Previously, we demonstrated that during severe sepsis there is a marked failure of neutrophil migration to the infection site, which contributes to dissemination of infection, resulting in high mortality. IL-17 plays an important role in neutrophil recruitment. Herein, we investigated the role of IL-17R signaling in polymicrobial sepsis induced by cecal ligation and puncture (CLP). It was observed that IL-17R-deficient mice, subjected to CLP-induced non-severe sepsis, show reduced neutrophil recruitment into the peritoneal cavity, spread of infection, and increased systemic inflammatory response as compared with C57BL/6 littermates. As a consequence, the mice showed an increased mortality rate. The ability of IL-17 to induce neutrophil migration was demonstrated in vivo and in vitro. Beside its role in neutrophil recruitment to the infection focus, IL-17 enhanced the microbicidal activity of the migrating neutrophils by a mechanism dependent on NO. Therefore, IL-17 plays a critical role in host protection during polymicrobial sepsis. The Journal of Immunology, 2009, 182: 7846-7854.
Resumo:
Sepsis is still a major cause of mortality in the intensive critical care unit and results from an overwhelming immune response to the infection. TNF signaling pathway plays a central role in the activation of innate immunity in response to pathogens. Using a model of polymicrobial sepsis by i.p. injection of cecal microflora, we demonstrate a critical role of TNFR1 and R2 activation in the deregulated immune responses and death associated with sepsis. A large and persistent production of TNF was found in wild-type (B6) mice. TNFR1/R2-deficient mice, compared with B6 mice, survive lethal polymicrobial infection with enhanced neutrophil recruitment and bacterial clearance in the peritoneal cavity. Absence of TNFR signaling leads to a decreased local and systemic inflammatory response with diminished organ injury. Furthermore, using TNFR1/R2-deficient mice, TNF was found to be responsible for a decrease in CXCR2 expression, explaining reduced neutrophil extravasation and migration to the infectious site, and in neutrophil apoptosis. In line with the clinical experience, administration of Enbrel, a TNF-neutralizing protein, induced however only a partial protection in B6 mice, with no improvement of clinical settings, suggesting that future TNF immunomodulatory strategies should target TNFR1 and R2. In conclusion, the present data suggest that the endogenous TNFR1/R2 signaling pathway in polymicrobial sepsis reduces neutrophil recruitment contributing to mortality and as opposed to pan-TNF blockade is an important therapeutic target for the treatment of polymicrobial sepsis. The Journal of Immunology, 2009, 182: 7855-7864.
Resumo:
Rationale Sepsis is a leading cause of death in the intensive care unit, characterized by a systemic inflammatory response (SIRS) and bacterial infection, which can often induce multiorgan damage and failure. Leukocyte recruitment, required to limit bacterial spread, depends on phosphoinositide-3 kinase gamma (PI3K gamma) signaling in vitro; however, the role of this enzyme in polymicrobial sepsis has remained unclear. Objectives: This study aimed to determine the specific role of the kinase activity of PI3K gamma in the pathogenesis of sepsis and multiorgan damage. Methods. PI3K gamma wild-type, knockout, and kinase-dead mice were exposed to cecal ligation and perforation induced sepsis and assessed for survival; pulmonary, hepatic, and cardiovascular damage; coagulation derangements; systemic inflammation; bacterial spread; and neutrophil recruitment. Additionally, wild-type mice were treated either before or after the onset of sepsis with a PI3K gamma inhibitor and assessed for survival, neutrophil recruitment, and bacterial spread. Measurements and Main Results: Both genetic and pharmaceutical PI3K gamma kinase inhibition significantly improved survival, reduced multiorgan damage, and limited bacterial decompartmentalization, while modestly affecting SIRS. Protection resulted from both neutrophil-independent mechanisms, involving improved cardiovascular function, and neutrophil-dependent mechanisms, through reduced susceptibility to neutrophil migration failure during severe sepsis by maintaining neutrophil surface expression of the chemokine receptor, CXCR2. Furthermore, PI3K gamma pharmacological inhibition significantly decreased mortality and improved neutrophil migration and bacterial control, even when administered during established septic shock. Conclusions: This study establishes PI3K gamma as a key molecule in the pathogenesis of septic infection and the transition from SIRS to organ damage and identifies it as a novel possible therapeutic target.
Resumo:
Rationale Recovering the neutrophil migration to the infectious focus improves survival in severe sepsis. Recently, we demonstrated that the cystathionine gamma-lyase (CSE)/hydrogen sulfide (H(2)S) pathway increased neutrophil recruitment to inflammatory focus during sterile inflammation. Objectives: To evaluate if H(2)S administration increases neutrophil migration to infectious focus and survival of mice. Methods. Sepsis was induced by cecal ligation and puncture (CLP) Measurements and Main Results. The pretreatments of mice with H2S donors (NaHS or Lawesson`s reagent) improved leukocyte rolling/adhesion in the mesenteric microcirculation as well as neutrophil migration. Consequently, bacteremia levels were reduced, hypotension and lung lesions were prevented, and the survival rate increased from approximately 13% to approximately 80% Even when treatment was delayed (6 h after CLP), a highly significant reduction in mortality compared with untreated mice was observed Moreover, H(2)S pretreatment prevented the down-regulation of CXCR2 and L-selectin and the up-regulation of CD11b and G protein-coupled receptor kinase 2 in neutrophils during sepsis. H(2)S also prevented the reduction of intercellular adhesion molecule-1 expression in the endothelium of the mesenteric microcirculation in severe sepsis Confirming the critical role of H(2)S on sepsis outcome, pretreatment with dl-propargylglycine (a CSE inhibitor) inhibited neutrophil migration to the infectious focus, enhanced lung lesions, and induced high mortality in mice subjected to nonsevere sepsis (from 0 to similar to 80%). The beneficial effects of H(2)S were blocked by glibenclamide (a ATP-dependent K(+) channel blocker). Conclusions: These results showed that H(2)S restores neutrophil migration to the infectious focus and improves survival outcome in severe sepsis by an ATP-dependent K(+) channel-dependent mechanism.
Resumo:
Introduction: Zinc is an essential element for human homeostasis being clearly related to almost all metabolic pathways. It is found in some neural circuitries, probably acting as a modulator of glutamatergic excitatory synapsis. In the auditory system its presence has been demonstrated within the cochlea and cochlear nuclei. Tinnitus symptoms are correlated to zinc physiology, and it has been postulated that the oligoelement could be used as an alternative treatment for this clinical situation. Aim: This study has evaluated the brainstem responses (ABR) in patients who suffer from chronic idiophatic tinnitus, before and after being treated with zinc. Neural transmissions in the brainstem auditory structures were also compared in both conditions. Materials and Methods: Forty-one patients (22 with tinnitus and 19 controls, groups I and II, respectively) were included in the study and submitted to anamnesis, otorhinolaryngologic examinations, biochemical evaluation and audiological tests. Group I patients received an specific zinc formulation for 90 days. ABR tests were performed at the beginning of the study and at the end of the zinc treatment. Results: First ABR tests showed no differences between the groups, but on the second evaluation there was a significant prolongation of the wave V latency and an enlargement of wave V amplitude shown in group I. Conclusion: Treatment with systemic zinc could change some aspects of auditory neurotransmission in the brainstem.
Resumo:
Transposons of the Mutator superfamily have been widely described in plants, but only recently have metazoan organisms been shown to harbour them. In this work we describe novel Mutator superfamily transposons from the genomes of the human parasites Schistosoma mansoni and S. japonicum, which we name Curupira-1 and Curupira-2. Curupira elements do not have Terminal Inverted Repeats (TIRs) at their extremities and generate Target Site Duplications (TSDs) of 9 base pairs. Curupira-2 transposons code for a conserved transposase and SWIM zinc finger domains, while Curupira-1 elements comprise these same domains plus a WRKY zinc finger. Alignment of transcript sequences from both elements back to the genomes indicates that they are subject to splicing to produce mature transcripts. Phylogenetic analyses indicate that these transposons represent a new lineage of metazoan Mutator-like elements with characteristics that are distinct from the recently described Phantom elements. Description of these novel schistosome transposons provides new insights in the evolution of transposable elements in schistosomes.