993 resultados para 174-1071M
Resumo:
Many consumer durable retailers often do not advertise their prices and instead ask consumers to call them for prices. It is easy to see that this practice increases the consumers' cost of learning the prices of products they are considering, yet firms commonly use such practices. Not advertising prices may reduce the firm's advertising costs, but the strategic effects of doing so are not clear. Our objective is to examine the strategic effects of this practice. In particular, how does making price discovery more difficult for consumers affect competing retailers' price, service decisions, and profits? We develop a model in which a manufacturer sells its product through a high-service retailer and a low-service retailer. Consumers can purchase the retail service at the high-end retailer and purchase the product at the competing low-end retailer. Therefore, the high-end retailer faces a free-riding problem. A retailer first chooses its optimal service levels. Then, it chooses its optimal price levels. Finally, a retailer decides whether to advertise its prices. The model results in four structures: (1) both retailers advertise prices, (2) only the low-service retailer advertises price, (3) only the high-service retailer advertises price, and (4) neither retailer advertises price. We find that when a retailer does not advertise its price and makes price discovery more difficult for consumers, the competition between the retailers is less intense. However, the retailer is forced to charge a lower price. In addition, if the competing retailer does advertise its prices, then the competing retailer enjoys higher profit margins. We identify conditions under which each of the above four structures is an equilibrium and show that a low-service retailer not advertising its price is a more likely outcome than a high-service retailer doing so. We then solve the manufacturer's problem and find that there are several instances when a retailer's advertising decisions are different from what the manufacturer would want. We describe the nature of this channel coordination problem and identify some solutions. © 2010 INFORMS.
Resumo:
BACKGROUND: Molecular tools may provide insight into cardiovascular risk. We assessed whether metabolites discriminate coronary artery disease (CAD) and predict risk of cardiovascular events. METHODS AND RESULTS: We performed mass-spectrometry-based profiling of 69 metabolites in subjects from the CATHGEN biorepository. To evaluate discriminative capabilities of metabolites for CAD, 2 groups were profiled: 174 CAD cases and 174 sex/race-matched controls ("initial"), and 140 CAD cases and 140 controls ("replication"). To evaluate the capability of metabolites to predict cardiovascular events, cases were combined ("event" group); of these, 74 experienced death/myocardial infarction during follow-up. A third independent group was profiled ("event-replication" group; n=63 cases with cardiovascular events, 66 controls). Analysis included principal-components analysis, linear regression, and Cox proportional hazards. Two principal components analysis-derived factors were associated with CAD: 1 comprising branched-chain amino acid metabolites (factor 4, initial P=0.002, replication P=0.01), and 1 comprising urea cycle metabolites (factor 9, initial P=0.0004, replication P=0.01). In multivariable regression, these factors were independently associated with CAD in initial (factor 4, odds ratio [OR], 1.36; 95% CI, 1.06 to 1.74; P=0.02; factor 9, OR, 0.67; 95% CI, 0.52 to 0.87; P=0.003) and replication (factor 4, OR, 1.43; 95% CI, 1.07 to 1.91; P=0.02; factor 9, OR, 0.66; 95% CI, 0.48 to 0.91; P=0.01) groups. A factor composed of dicarboxylacylcarnitines predicted death/myocardial infarction (event group hazard ratio 2.17; 95% CI, 1.23 to 3.84; P=0.007) and was associated with cardiovascular events in the event-replication group (OR, 1.52; 95% CI, 1.08 to 2.14; P=0.01). CONCLUSIONS: Metabolite profiles are associated with CAD and subsequent cardiovascular events.
Resumo:
Most studies that apply qualitative comparative analysis (QCA) rely on macro-level data, but an increasing number of studies focus on units of analysis at the micro or meso level (i.e., households, firms, protected areas, communities, or local governments). For such studies, qualitative interview data are often the primary source of information. Yet, so far no procedure is available describing how to calibrate qualitative data as fuzzy sets. The authors propose a technique to do so and illustrate it using examples from a study of Guatemalan local governments. By spelling out the details of this important analytic step, the authors aim at contributing to the growing literature on best practice in QCA. © The Author(s) 2012.