994 resultados para 152-919A


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A quasi-thermodynamic model of metalorganic vapor phase epitaxy (MOVPE) growth of GaxAlyIn1-x-yN alloys has been proposed. In view of the complex growth behavior of GaxAlyIn1-x-yN, we focus our attention on the galliumrich quaternary alloys that are lattice matched to GaN, In0.15Ga0.85N or Al0.15Ga0.85N, which are widely used in the GaN-based optoelectronic devices. The relationship between GaAlInN alloy composition and input molar ratio of group III metalorganic compounds at various growth conditions has been calculated. The influence of growth temperature, nitrogen fraction in the carrier gas, input partial pressure of group III metalorganics, reactor pressure, V/III ratio and the decomposition rate of ammonia on the composition of deposited alloys are studied systematically. Based on these calculated results, we can find out the appropriate growth conditions for the MOVPE growth of GaxAlyIn1-x-yN alloy lattice matched to GaN, In0.15Ga0.85N or Al0.15Ga0.85N. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Defects and morphologies are presented in this paper as revealed with transmission electron microscope (TEM) in the In(0.8)G(0.2)As/InAlAs heterostructure on InP(001) for high-electron-mobility transistors application. Most of the misfit dislocation lines are 60 degrees type and they deviate < 110 > at some angles to either side according to their Burges vectors. The misfit dislocation lines deviating [-110] are divided into two types according to whether their edge component b(eg) of Burges vectors in [001] pointing up or down. If b(eg) points up in the growth direction, there is the local periodical strain modulation along the dislocation line. In addition, the periodical modulation in height along [-110] on the In(0.8)G(0.2)As surface is observed, this surface morphology is not associated with the relaxation of mismatch strain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have demonstrated an electroabsorption modulator (EAM) and semiconductor optical amplifier (SOA) monolithically integrated with novel dual-waveguide spot-size converters (SSCs) at the input and output ports for low-loss coupling to planar light-guide circuit silica waveguide or cleaved single-mode optical fiber. The device is fabricated by means of selective-area MOVPE growth (SAG), quantum well intermixing (QWI) and asymmetric twin waveguide (ATG) technologies with only three steps low-pressure MOVPE growth. For the device structure, in SOA/EAM section, double ridge structure was employed to reduce the EAM capacitances and enable high bit-rate operation. In the SSC sections, buried ridge stripe (BRS) were incorporated. Such a combination of ridge, ATG and BRS structure is reported for the first time in which it can take advantage of both easy processing of ridge structure and the excellent mode characteristic of BRS. At the wavelength range of 1550-1600 nm, lossless operation with extinction ratios of 25 dB DC and more than 10 GHz 3-dB bandwidth is successfully achieved. The beam divergence angles of the input and output ports of the device are as small as 8.0 degrees x 12.6 degrees, resulting in 3.0 dB coupling loss with cleaved single-mode optical fiber. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Raman scattering study of vibrational modes and hole concentration in a ferromagnetic semiconductor Ga1-xMnxSb grown by Mn ion implantation, deposition and post-annealing has been presented. The experiments are performed both in implanted and unimplanted regions before and after etching the samples. The Raman spectra measured from the unimplanted region show only GaSb-like phonon modes. On the other hand, the spectra measured from the implanted region show additional phonon modes approximately at 115, 152, 269, 437 and 659 cm(-1). The experimental results demonstrate that the extra modes are associated with surface defects, crystal disorder and blackish layer that is formed due to Mn ion implantation, deposition and annealing processes. Furthermore, we have determined the hole concentration as a function of laser probing position by modeling the Raman spectra using coupled mode theory. The contributions of GaSb-like phonon modes and coupled LO-phonon plasmon mode are taken into consideration in the model. The hole-concentration-dependent CLOPM is resolved in the spectra measured from the implanted and nearby implanted regions. The hole concentrations determined by Raman scattering are found to be in good agreement with those measured by the electrochemical capacitance-voltage technique.