1000 resultados para 150399 Business and Management not elsewhere classified
Resumo:
Context-aware applications rely on implicit forms of input, such as sensor-derived data, in order to reduce the need for explicit input from users. They are especially relevant for mobile and pervasive computing environments, in which user attention is at a premium. To support the development of context-aware applications, techniques for modelling context information are required. These must address a unique combination of requirements, including the ability to model information supplied by both sensors and people, to represent imperfect information, and to capture context histories. As the field of context-aware computing is relatively new, mature solutions for context modelling do not exist, and researchers rely on information modelling solutions developed for other purposes. In our research, we have been using a variant of Object-Role Modeling (ORM) to model context. In this paper, we reflect on our experiences and outline some research challenges in this area.
Resumo:
The immaturity of the field of context-aware computing means that little is known about how to incorporate appropriate personalisation mechanisms into context-aware applications. One of the main challenges is how to elicit and represent complex, context-dependent requirements, and then use the resulting representations within context-aware applications to support decision-making processes. In this paper, we characterise several approaches to personalisation of context-aware applications and introduce our research on personalisation using a novel preference model.
Resumo:
We describe a tool for analysing information flow in security hardware. It identifies both sub-circuits critical to the preservation of security as well as the potential for information flow due to hardware failure. The tool allows for the composition of both logical and physical views of circuit designs. An example based on a cryptographic device is provided.
Resumo:
The design, development, and use of complex systems models raises a unique class of challenges and potential pitfalls, many of which are commonly recurring problems. Over time, researchers gain experience in this form of modeling, choosing algorithms, techniques, and frameworks that improve the quality, confidence level, and speed of development of their models. This increasing collective experience of complex systems modellers is a resource that should be captured. Fields such as software engineering and architecture have benefited from the development of generic solutions to recurring problems, called patterns. Using pattern development techniques from these fields, insights from communities such as learning and information processing, data mining, bioinformatics, and agent-based modeling can be identified and captured. Collections of such 'pattern languages' would allow knowledge gained through experience to be readily accessible to less-experienced practitioners and to other domains. This paper proposes a methodology for capturing the wisdom of computational modelers by introducing example visualization patterns, and a pattern classification system for analyzing the relationship between micro and macro behaviour in complex systems models. We anticipate that a new field of complex systems patterns will provide an invaluable resource for both practicing and future generations of modelers.