999 resultados para 14C conc std dev
Resumo:
We report the sulfur and oxygen isotope composition of sulfate (d34SSO4 and d18OSO4, respectively) in coexisting barite and carbonate-associated sulfate (CAS), which we use to explore temporal variability in the marine sulfur cycle through the middle Cretaceous. The d34SSO4 of marine barite tracks previously reported sulfur isotope data from the tropical Pacific. The d18OSO4 of marine barite exhibits more rapid and larger isotopic excursions than the d34SSO4 of marine barite; these excursions temporally coincide with Ocean Anoxic Events (OAEs). Neither the d34SSO4 nor the d18OSO4 measured in marine barite resembles the d34SSO4 or the d18OSO4 measured in coexisting CAS. Culling our data set for elemental parameters suggestive of carbonate recrystallization (low [Sr] and high Mn/Sr) improves our record of d18OSO4 in CAS in the Cretaceous. This suggests that the CAS proxy can be impacted by carbonate recrystallization in some marine sediments. A box model is used to explore the response of the d34SSO4 and d18OSO4 to different perturbations in the marine biogeochemical sulfur cycle. We conclude that the d34SSO4 in the middle Cretaceous is likely responding to a change in the isotopic composition of pyrite being buried, coupled possibly with a change in riverine input. On the other hand, the d18OSO4 is likely responding to rapid changes in the reoxidation pathway of sulfide, which we suggest may be due to anoxic versus euxinic conditions during different OAEs.
Resumo:
Data from deep sea drilling, linear magnetic anomalies and bathymetric measurements together with age and morphometric characteristics of seamounts have been used to construct a paleobathymetric map of the oceans 35 million years ago. A brief analysis of these results is presented.
Resumo:
The long-term warmth of the Eocene (~56 to 34 million years ago) is commonly associated with elevated partial pressure of atmospheric carbon dioxide (pCO2). However, a direct relationship between the two has not been established for short-term climate perturbations. We reconstructed changes in both pCO2 and temperature over an episode of transient global warming called the Middle Eocene Climatic Optimum (MECO; ~40 million years ago). Organic molecular paleothermometry indicates a warming of southwest Pacific sea surface temperatures (SSTs) by 3° to 6°C. Reconstructions of pCO2 indicate a concomitant increase by a factor of 2 to 3. The marked consistency between SST and pCO2 trends during the MECO suggests that elevated pCO2 played a major role in global warming during the MECO.
Resumo:
Records of the past neodymium (Nd) isotope composition of the deep ocean can resolve ambiguities in the interpretation of other tracers. We present the first Nd isotope data for sedimentary benthic foraminifera. Comparison of the epsilon-Nd of core-top foraminifera from a depth transect on the Cape Basin side of the Walvis Ridge to published seawater data, and to the modern dissolved SiO2- epsilon-Nd trend of the deep Atlantic, suggests that benthic foraminifera represent a reliable archive of the deep water Nd isotope composition. Neodymium isotope values of benthic foraminifera from ODP Site 1264A (Angola Basin side of the Walvis Ridge) from the last 8 Ma agree with Fe-Mn oxide coatings from the same samples and are also broadly consistent with existing fish teeth data for the deep South Atlantic, yielding confidence in the preservation of the marine Nd isotope signal in all these archives. The marine origin of the Nd in the coatings is confirmed by their marine Sr isotope values. These important results allow application of the technique to down-core samples. The new epsilon-Nd datasets, along with ancillary Cd/Ca and Nd/Ca ratios from the same foraminiferal samples, are interpreted in the context of debates on the Neogene history of North Atlantic Deep Water (NADW) export to the South Atlantic. In general, the epsilon-Nd and delta13C records are closely correlated over the past 4.5 Ma. The Nd isotope data suggest strong NADW export from 8 to 5 Ma, consistent with one interpretation of published delta13C gradients. Where the epsilon-Nd record differs from the nutrient-based records, changes in the pre-formed delta13C or Cd/Ca of southern-derived deep water might account for the difference. Maximum NADW-export for the entire record is suggested by all proxies at 3.5-4 Ma. Chemical conditions from 3 to 1 Ma are totally different, showing, on average, the lowest NADW export of the record. Modern-day values again imply NADW export that is about as strong as at any stage over the past 8 Ma.
Resumo:
Temporal and regional changes in paleoproductivity and paleoceanography in the eastern Mediterranean Sea during the past 12 kyr were reconstructed on the basis of the stable oxygen and carbon isotope composition of the epibenthic Planulina ariminensis and the shallow endobenthic Uvigerina mediterranea from three sediment cores of the Aegean Sea and Levantine Basin. The Younger Dryas is characterized by high d18O values, indicating enhanced salinities and low temperatures of deep water masses at all investigated sites. With the onset of the Holocene, d18O records show a continuous decrease towards the onset of sapropel S1 formation, mainly caused by a freshening and warming of surface waters at deep water formation sites. In the middle and late Holocene, the similarity of d18O values from the southern Aegean Sea and Levantine Basin suggests the influence of isotopically identical deep water masses. By contrast, slightly higher d18O values are observed the northern Aegean Sea, which probably point to lower temperatures of North Aegean deep waters. The epifaunal d13C records reveal clear changes in sources and residence times of eastern Mediterranean deep waters associated with period of S1 formation. Available data for the early and late phase of sapropel S1 formation and for the interruption around 8.2 kyr display drops by 0.5 and 1.5 per mil, indicating the slow-down of deep water circulation and enhanced riverine input of isotopically light dissolved inorganic carbon from terrestrial sources into the eastern Mediterranean Sea. The decrease in epifaunal d13C signals is particularly expressed in the southern Aegean Sea and Levantine Basin, while it is less pronounced in the northern Aegean Sea. This points to a strong reduction in deep water exchange rates in the southern areas, but the persistence of local deep water formation in the northern Aegean Sea. The d13C values of U. mediterranea records reveal temporal and regional differences in paleoproductivity during the past 12 kyr, with rather eutrophic and mesotrophic conditions in the North Aegean Sea and southeast Levantine Basin, respectively, while the South Aegean Sea is characterized by rather oligotrophic conditions. After S1 formation, increasing d13C values reflect a progressive decrease in surface water productivity in the eastern Mediterranean Sea during the middle and late Holocene. In the northern Aegean Sea, this time interval is marked by repetitive changes in organic matter fluxes documented by significant fluctuations in the d13C signal of U. mediterranea on millennial- to multi-centennial time scales. These fluctuations can be linked to short-term changes in river runoff driven by northern hemisphere climatic variability.
Resumo:
The Long-Term Ecological Research (LTER) observatory HAUSGARTEN, in the eastern Fram Strait, provides us the valuable ability to study the composition of benthic megafaunal communities through the analysis of seafloor photographs. This, in combination with extensive sampling campaigns, which have yielded a unique data set on faunal, bacterial, biogeochemical and geological properties, as well as on hydrography and sedimentation patterns, allows us to address the question of why variations in megafaunal community structure and species distribution exist within regional (60-110 km) and local (<4 km) scales. Here, we present first results from the latitudinal HAUSGARTEN gradient, consisting of three different stations (N3, HG-IV, S3) between 78°30'N and 79°45'N (2351 - 2788 m depth), obtained via the analysis of images acquired by a towed camera (OFOS - Ocean Floor Observation System) in 2011. We assess variability in megafaunal densities, species composition and diversity as well as biotic and biogenic habitat features, which may cause the patterns observed. While there were significant regional-scale differences in megafaunal composition and densities between the stations (N3 = 26.74 ± 0.63; HG-IV = 11.21 ± 0.25; S3 = 18.34 ± 0.39 individuals/m**2), significant local differences were only found at HG-IV. Regional-scale variations may be due to the significant differences in ice coverage at each station as well as the different quantities of protein available, whereas local-scale differences at HG-IV may be a result of variation in bottom topography or factors not yet identified.
Resumo:
Modern planktonic foraminifera collected with a sediment trap and subfossil assemblages from surface sediments from Galway Mound in the Porcupine Seabight off southwestern Ireland, northeastern Atlantic, were studied to show recent assemblage variations. The sediment trap operated from April to August 2004 and covers the spring bloom and early summer conditions with sampling intervals of 8 days. Eleven different species were recorded. Glorotalia hirsuta, Turborotalita quinqueloba and Globigerinita glutinata appeared predominately in spring. Neogloboquadrina incompta, Globigerina bulloides and Globorotalia inflata were abundant in spring and summer. The highest foraminiferal tests flux occured in June. The faunal composition was similar to subfossil assemblages from surface sediments, but the species proportions were different. This was mainly affected by the subtropical G. hirsuta, which was frequent in 2004 and rare in surface sediment samples and in earlier plankton collections from the southern Porcupine Seabight that were performed during the 1990s. The weight of deposited foraminifera is mainly influenced by spring bloom as indicated by sea-surface chlorophyll-a data. The top three-ranked species, G. hirsuta, N. incompta and G. bulloides contributed 87 % to the foraminiferal carbonate flux at Galway Mound. Foraminiferal carbonate and shell flux as well as the shell size revealed variations, which are related to lunar periodicity. The data infer a lunar pacing of reproduction for the main species as well as for G. glutinata and G. inflata, which was not recorded before.
Resumo:
The geometry of the Tonga Arc implies that it has rotated approximately 17° clockwise away from the Lau Ridge as the Lau Basin formed in between. Questions have arisen about the timing of the opening, whether the arc behaved rigidly, and whether the opening occurred instead from motion of the Lau Ridge, the remanent arc. We undertook to address these questions by taking paleomagnetic samples from sediment cores drilled on the Tonga Arc at Sites 840 and 841, orienting the samples in azimuth, and comparing the paleodeclinations to expected directions. Advanced hydraulic piston corer (APC) cores from Holes 840C and 841A were oriented during drilling with a tool based on a magnetic compass and attached to the core barrel. Samples from Hole 841B were drilled with a rotary core barrel (RCB) and therefore are azimuthally unoriented. They were oriented by identifying faults and dipping beds in the core and aligning them with the same features in the Formation MicroScanner (FMS) wireline logs, which were themselves oriented with a three-axis magnetometer in the FMS tool. The best results came from the APC cores, which yielded a mean pole at -69.0°S, 112.2°E for an age of 4 Ma. This pole implies a declination anomaly of 20.8° ± 12.6° (95% confidence limit), which appears to have occurred by tectonic rotation of the Tonga Arc. This value is almost exactly that expected from the geometry of the arc and implies that it did indeed rotate clockwise as a rigid body. The large uncertainty in azimuth results from core orientation errors, which have an average standard deviation of 18.6°. The youngest cores used to calculate the APC pole contain sediments deposited during Subchron 2A (2.48-3.40 Ma), and their declinations are indistinguishable from the others. This observation suggests that most of the rotation occurred after their deposition; this conclusion must be treated with caution, however, because of the large azimuthal orientation errors. Poles from late and early Miocene sediments of Hole 841B are more difficult to interpret. Samples from this hole are mostly normal in polarity, fail a reversal test, and yield poles that suggest that the normal-polarity directions may be a recent overprint. Late Miocene reversed-polarity samples may be unaffected by this overprint; if so, they imply a declination anomaly of 51.1° ± 11.5°. This observation may indicate that, for older sediments, Tonga forearc rotations are larger than expected.
Resumo:
High resolution studies from the Propeller Mound, a cold-water coral carbonate mound in the NE Atlantic, show that this mound consists of >50% carbonate justifying the name "carbonate mound". Through the last ~300,000 years approximately one third of the carbonate has been contributed by cold-water corals, namely Lophelia pertusa and Madrepora oculata. This coral bound contribution to the carbonate budget of Propeller Mound is probably accompanied by an unknown portion of sediments buffered from suspension by the corals. However, extended hiatuses in Propeller Mound sequences only allow the calculation of a net carbonate accumulation. Thus, net carbonate accumulation for the last 175 kyr accounts for only <0.3 g/cm2/kyr, which is even less than for the off-mound sediments. These data imply that Propeller Mound faces burial by hemipelagic sediments as has happened to numerous buried carbonate mounds found slightly to the north of the investigated area.