980 resultados para voltage over-scaling
Resumo:
Considering voltage stability as a static viability problem, this paper takes a particular concern of Q-V characteristics and reflects on certain notions that do not seem to have been explicitly mentioned or derived in the existing documented literature. The equations of Q-V characteristics are rederived in exactness, some salient points on the curve are discovered and analysed. The results of the analysis are illustrated through a case study
Resumo:
This study examines the thermal efficiency of the operation of arc furnace and the effects of harmonics and voltage dips of a factory located near Bangkok. It also attempts to find ways to improve the performance of the arc furnace operation and minimize the effects of both harmonics and voltage dips. A dynamic model of the arc furnace has been developed incorporating both electrical and thermal characteristics. The model can be used to identify potential areas for improvement of the furnace and its operation. Snapshots of waveforms and measurement of RMS values of voltage, current and power at the furnace, at other feeders and at the point of common coupling were recorded. Harmonic simulation program and electromagnetic transient simulation program were used in the study to model the effects of harmonics and voltage dips and to identify appropriate static and dynamic filters to minimize their effects within the factory. The effects of harmonics and voltage dips were identified in records taken at the point of common coupling of another factory supplied by another feeder of the same substation. Simulation studies were made to examine the results on the second feeder when dynamic filters were used in the factory which operated the arc furnace. The methodology used and the mitigation strategy identified in the study are applicable to general situation in a power distribution system where an arc furnace is a part of the load of a customer
Resumo:
As power systems grow in their size and interconnections, their complexity increases. Rising costs due to inflation and increased environmental concerns has made transmission, as well as generation systems be operated closer to design limits. Hence power system voltage stability and voltage control are emerging as major problems in the day-to-day operation of stressed power systems. For secure operation and control of power systems under normal and contingency conditions it is essential to provide solutions in real time to the operator in energy control center (ECC). Artificial neural networks (ANN) are emerging as an artificial intelligence tool, which give fast, though approximate, but acceptable solutions in real time as they mostly use the parallel processing technique for computation. The solutions thus obtained can be used as a guide by the operator in ECC for power system control. This paper deals with development of an ANN architecture, which provide solutions for monitoring, and control of voltage stability in the day-to-day operation of power systems.
Resumo:
This paper presents an artificial feed forward neural network (FFNN) approach for the assessment of power system voltage stability. A novel approach based on the input-output relation between real and reactive power, as well as voltage vectors for generators and load buses is used to train the neural net (NN). The input properties of the feed forward network are generated from offline training data with various simulated loading conditions using a conventional voltage stability algorithm based on the L-index. The neural network is trained for the L-index output as the target vector for each of the system loads. Two separate trained NN, corresponding to normal loading and contingency, are investigated on the 367 node practical power system network. The performance of the trained artificial neural network (ANN) is also investigated on the system under various voltage stability assessment conditions. As compared to the computationally intensive benchmark conventional software, near accurate results in the value of L-index and thus the voltage profile were obtained. Proposed algorithm is fast, robust and accurate and can be used online for predicting the L-indices of all the power system buses. The proposed ANN approach is also shown to be effective and computationally feasible in voltage stability assessment as well as potential enhancements within an overall energy management system in order to determining local and global stability indices