998 resultados para virtudes artificiais


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Las autobiografías de la gente de pantalla, famosos o celebridades tienen una gran proliferación, son una tendencia de actualidad y responden a una realidad comunicacional. Este trabajo tiene interés por los factores que hacen que las autobiografías sigan siendo tan producidas y consumidas. La investigación se centra en lo que cuentan las autobiografías, pero sobre todo en el cómo lo cuentan, para llamar la atención y lograr el interés del público. Se plantea responder a la pregunta ¿cómo se construyen discursivamente las personas de la farándula en los relatos autobiográficos para interpelar al público?, partiendo de la hipótesis que este tipo de autobiografías utilizan en sus narrativas estrategias provenientes de la comunicación mediática para interpelar y entretener; y, estrategias del discurso de virtudes, para promover a los protagonistas como ejemplos de vida, de ahí el calificativo de los nuevos santos de la farándula como una categoría narrativa de vidas que asemejan el llamado de las vidas en santidad. Para cumplir con este propósito, el trabajo se divide en tres capítulos. En el primer capítulo se realiza una propuesta teórica que permite un acercamiento con los principales descriptores: la autobiografía, la farándula y lo ejemplar. En el segundo, se analiza una muestra de cuatro autobiografías, a partir de las estrategias discursivas que utiliza la comunicación mediática. En el tercer capítulo se identifica la relación de las autobiografías con el discurso de virtudes. Para culminar se presenta un acápite de resultados que sintetizan el aprendizaje obtenido y que demuestra a las autobiografías como géneros discursivos que permiten la hibridación de distintos modelos narrativos, en una constante relación de las vidas contadas entre la realidad y la ficcionalización propia de la comunicación de masas y de la industria del entretenimiento, que ahora además incorpora el modelo de la ejemplaridad.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A avaliação dos corantes de uso em alimentos no âmbito mundial é direcionada pelo controle da Ingestão Diária Aceitável (IDA), normatização desenvolvida pela Organização Mundial da Saúde (OMS) com parceria da Organização das Nações Unidas para Agricultura e Alimentação (FAO). No Brasil não há legislação específica sobre o uso dos corantes em produtos voltados ao público infantil, existe apenas a delimitação de IDA para as substâncias permitidas, fazendo com que as fases pré-escolares e escolares não tenham respaldo legislativo. Diante dessa situação, o presente estudo tem objetivo de verificar a presença de corantes na composição de alimentos industrializados consumidos com frequência pelo público infantil. Para a realização desse estudo, foram selecionados onze produtos industrializados bastante consumidos pelas crianças brasileiras. Foram avaliados 78 produtos em um total de 26 marcas, onde a prevalência dos corantes artificiais e naturais foi semelhante e dentre os corantes artificiais os que mais prevaleceram foram vermelho 40, azul brilhante e amarelo crepúsculo. Na análise dos produtos citados pela Pesquisa Nacional de Saúde (PNS) 2013 feita pelo Instituto Brasileiro de Geografia e Estatística (IBGE), o produto bolinho recheado apresentou menos corantes em sua composição em relação aos demais produtos pesquisados. Os corantes artificiais foram mais presentes nas bebidas, sendo a categoria do suco néctar a única a apresentar três dos quatro tipos de corantes estudados. Nenhum produto citado pela PNS 2013 teve corantes inorgânicos como ingrediente. Fica evidente a relevância de estudos que avaliem a presença de corantes em alimentos consumidos pelo público infantil, uma vez que além de não existir legislação própria para este grupo não há uma avaliação periódica das concentrações desses aditivos utilizadas nos produtos comercializados no Brasil, fatos que contribuem com a ingestão diária exacerbada desses aditivos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O contexto desta tese é a Inteligência Artificial aplicada à Educação, especificamente a área dos Sistemas Tutores Inteligentes (STI). Apesar das características multidisciplinares e interdisciplinares, a preocupação maior do trabalho se dá quanto aos aspectos computacionais. A multidisciplinaridade está na relação entre os aspectos educacionais, filosóficos e psicológicos inerentes a toda construção de um software educacional, e a interdisciplinaridade acontece no relacionamento da IA com a Informática na Educação. Esta tese propõe o uso de aspectos afetivos como apoio à decisão de ação por parte de um STI. As nossas hipóteses fundamentais são: um sistema de ensino e aprendizagem computacional deve levar em consideração fatores afetivos tornando mais flexível a interação; e a arquitetura de um sistema computacional de interação em tempo real com agentes humanos deve prever explicitamente, em sua arquitetura básica, as crenças e o raciocínio afetivos. Para demonstrar essas idéias, foi definida uma arquitetura para apoiar um STI de modo a reconhecer alguns fatores afetivos, representativos de estratégias de ação de agentes humanos em interação com sistemas. Esse reconhecimento é realizado através de construções retiradas dos comportamentos observáveis do agente humano em contextos determinados. A arquitetura prevê um Sistema Multiagente para executar a percepção de fatores afetivos e da conduta do aluno em interação e de um agente pedagógico, representando o tutor. O agente tutor é modelado através de estados mentais e é responsável pelo raciocínio de alto nível. O modelo computacional de agentes de Móra [MÓR2000] foi utilizado para implementar o “kernel cognitivo” (termo cunhado por Móra e Giraffa [GIR99] que designa a parte responsável pela deliberação). O “kernel cognitivo” decide que ações tomar para um conjunto de características de uma avaliação pedagógica. A utilização de fatores afetivos e da avaliação cognitiva de situações emocionais permite a flexibilização das estratégias quanto à adaptabilidade a agentes humanos. Particularmente, foi adotado o enfoque cognitivo para análise de situações, baseado em teorias cognitivistas sobre emoções. O uso de tecnologia multiagente, no enfoque mentalístico, especificamente BDI (Belief, Desire, Intention) e da ferramenta X-BDI, permite a formalização e construção de um tutor atuante na avaliação pedagógica. A modelagem do aluno passa a ser constituída de aspectos qualitativos e quantitativos. Estudos de casos são apresentados, em situações que consideram os fatores afetivos e nas mesmas situações sem estas considerações. As decisões do tutor para agir são analisadas e confrontadas. Os resultados mostram um impacto positivo na adaptabilidade e ação pedagógica do tutor, sendo coerente com as teorias modernas [SAL97],[DAM2000] sobre as emoções que as consideram partes fundamentais para agir. A maior contribuição desta tese está na agregação de raciocínio sobre a afetividade envolvida em situações de ensino aprendizagem de agentes humanos e artificiais e avança dentro da perspectiva de pesquisa do grupo de IA da UFRGS, quanto ao desenvolvimento de Ambientes de Ensino e Aprendizagem modelados com tecnologia multiagente, com o uso da metáfora de estados mentais.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As técnicas que formam o campo da Descoberta de Conhecimento em Bases de Dados (DCBD) surgiram devido à necessidade de se tratar grandes volumes de dados. O processo completo de DCBD envolve um elevado grau de subjetividade e de trabalho não totalmente automatizado. Podemos dizer que a fase mais automatizada é a de Mineração de Dados (MD). Uma importante técnica para extração de conhecimentosa partir de dados é a Programação Lógica Indutiva (PLI), que se aplica a tarefas de classificação, induzindo conhecimento na forma da lógica de primeira ordem. A PLI tem demonstrado as vantagens de seu aparato de aprendizado em relação a outras abordagens, como por exemplo, aquelas baseadas em aprendizado proposicional Os seus algorítmos de aprendizado apresentam alta expressividade, porém sofrem com a grande complexidade de seus processos, principalmente o teste de corbertura das variáveis. Por outro lado, as Redes Neurais Artificiais (RNs) introduzem um ótimo desempenho devido à sua natureza paralela. às RNs é que geralmente são "caixas pretas", o que torna difícil a obtenção de um interpretação razoável da estrutura geral da rede na forma de construções lógicas de fácil compreensão Várias abordagens híbridas simbólico-conexionistas (por exemplo, o MNC MAC 890 , KBANN SHA 94 , TOW 94 e o sistema INSS OSO 98 têm sido apresentadas para lidar com este problema, permitindo o aprendizado de conhecimento simbólico através d euma RN. Entretanto, estas abordagens ainda lidam com representações atributo-valor. Neste trabalho é apresentado um modelo que combina a expressividade obtida pela PLI com o desempenho de uma rede neural: A FOLONET (First Order Neural Network).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabalho tem como objetivo verificar o comportamento mecânico e físico de pozolanas artifíciais estabilizadas química e granulometricamente, curadas por dois processos de cura denominados de : autoclave(ATC), que utiliza temperaturas na faixa de 149 a 188°C e câmara à temperatura constante(CTC) que utiliza uma temperatura de ± 21°C. Também fez-se análises estatísticas com a finalidade de se determinar o efeito da energia de moldagem, temperatura e tempo de cura sobre os resultados dos ensaios, para cada processo de cura, além de se determinar modelos matemáticos para previsão de resultados de resistência através de regressões múltiplas e simples. As pozolanas artificiais empregadas foram as cinzas volante e pesada da Usina de Candiota, as quais foram estabilizadas com cal dolomítica hidratada e areia do Rio Guaíba. Os ensaios de resistência à compressão simples , absorção e perda de massa basearam-se nas normas da ABNT e DNER e para os estudos de análise estatística, fez-se anteriormente aos ensaios, dois planejamentos experimentais denominados de Split-Splot e Quadrado Latino, que foram utilizados nos processos de autoclavagem e câmara à temperatura constante, representativamente. Os Corpos-de-Prova curados na câmara à temperatura constante, até os 28 dias de cura, apresentaram resultados de resistências inferiores aqueles curados pelo processo de autoclave. Aos 60 dias de cura suas resistências ficaram na faixa dos valores de Corpos-de-Provas curados pela autoclave nas temperaturas de 149 a 188°C, excessão feita na mistura utilizando areia, onde em todos os períodos de cura estudados,os valores de resistência dos Corpos-de-Prova curados pelo câmara à temperatura constante foram inferiores. A proporção da quantidade de cal e cinza na mistura, bem como o valor da superfície específica da cinza influenciam nos resultados de ensaios, independentemente da variação dos fatores principais. Em termos de análise estatística verificou-se que a energia de moldagem e o tempo de cura são os fatores que apresentam os maiores efeitos sobre os resultados da resistência, para os processos de cura ATC e CTC, respectivamente.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O presente trabalho apresenta uma revisão bibliográfica sobre a influência da vegetação nos taludes naturais e artificiais. A pesquisa procurou enfocar a captação e a liberação da água pelos vegetais, a influência das raízes pivotantes e fasciculadas como reforço do solo, analisar os efeitos benéficos e adversos da presença da vegetação nos taludes e a recuperação ou estabelecimento de vegetação no solo. Apresenta ainda um estudo de casos de modelos geomecânicos onde avalia a utilização dos tipos de vegetação, levando em conta o comprimento das raízes aplicado para cada situação específica de corte ou de aterro. O trabalho mostra diversos aspectos relacionados à estabilização de taludes através da vegetação, que são contraditórios na literatura. Diversos pontos são levantados para estudo adicional posterior em relação à interceptação da chuva, infiltração e sobrecarga. Os efeitos mecânicos das raízes são evidenciados e sua influência em taludes rasos é demonstrada.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atualmente, pesquisadores das mais diversas áreas, tais como: Geologia, Física, Cartografia, Oceanografia, entre outras, utilizam imagens de satélite como uma fonte valiosa para a extração de informações sobre a superfície terrestre. Muitas vezes, a análise (classificação) destas imagens é realizada por métodos tradicionais sejam eles supervisionados (como o Método de Máxima Verossimilhança Gaussiana) ou nãosupervisionados (como o Método de Seleção pelo Pico do Histograma). Entretanto, pode-se utilizar as Redes Neurais Artificiais como uma alternativa para o aumento da acurácia em classificações digitais. Neste trabalho, utilizou-se imagens multi-espectrais do satélite LANDSAT 5-TM para a identificação de espécies vegetais (Mata Nativa, Eucalyptus e Acácia) em uma região próxima aos municípios de General Câmara, Santo Amaro e Taquari, no Estado do Rio Grande do Sul, Brasil. Comparou-se qualitativamente e quantitativamente os resultados obtidos pelo método de Máxima Verossimilhança Gaussiana e por uma Rede Neural Artificial Multinível com BackPropagation na classificação da área de estudo. Para tanto, parte desta área foi mapeada através de uma verificação de campo e com o auxílio de classificadores nãosupervisionados (Kohonen, que é uma Rede Neural, e o método de Seleção pelo Pico do Histograma). Com isto, foi possível coletar dois conjuntos de amostras, sendo que um deles foi utilizado para o treinamento dos métodos e o outro (conjunto de reconhecimento) serviu para a avaliação das classificações obtidas. Após o treinamento, parte da área de estudo foi classificada por ambos os métodos. Em seguida, os resultados obtidos foram avaliados através do uso de Tabelas de Contingência, considerando um nível de significância de 5%. Por fim, na maior parte dos testes realizados, a Rede Neural Artificial Multinível com BackPropagation apresentou valores de acurácia superiores ao Método de Máxima Verossimilhança Gaussiana. Assim, com este trabalho observou-se que não há diferença significativa de classificação para as espécies vegetais, ao nível de 5%, para a área de estudo considerada, na época de aquisição da imagem, para o conjunto de reconhecimento.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Esta dissertação situa-se no projeto de pesquisa intitulado "Um Modelo Computacional de Aprendizagem a Distância Baseada na Concepção Sócio- Interacionista". Este projeto se enquadra na visão de aprendizagem situada, isto é, na concepção de cognição como uma prática social baseada na utilização de linguagem, símbolos e signos. O objetivo é a construção de um ambiente de Educação a Distância, implementado como um sistema multiagente composto por agentes artificiais e agentes humanos, inspirando-se na teoria sócio-interacionista de Vygotsky. Nesta sociedade, todos os personagens (aprendizes e agentes artificiais) são modelados como agentes sociais integrados em um ambiente de ensino-aprendizagem. A arquitetura deste sistema é formada pelos seguintes agentes artificiais: agente diagnóstico, agente mediador, agente colaborativo, agente semiótico e agente social. Os agentes humanos que interagem com o sistema desempenham o papel de tutores, aprendizes ou ambos. Esta dissertação visa à concepção e à implementação de um dos agentes desta arquitetura: o agente semiótico. Esta concepção foi baseada na Engenharia Semiótica, em particular para a apresentação do material instrucional utilizado no processo de ensinoaprendizagem.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O presente trabalho apresenta o desenvolvimento de um estudo da extração de óleo vegetal em instalações industriais do tipo Rotocell. O extrator tem forma cilíndrica e possui um eixo principal no qual estão fixos vagões que transportam os sólidos através do extrator, e, abaixo desses existem reservatórios responsáveis pelo recebimento da micela. Acima dos vagões há seções de distribuição de micela que é despejada sobre os sólidos dos vagões, que extrai o óleo. Possui também seções de carregamento e drenagem. Um modelo físico-matemático e um programa para simular a operação do extrator foram desenvolvidos considerando os seguintes fenômenos: difusão de óleo pela micela; transferência de óleo entre as fases bulk e poro; variação da massa específica e viscosidade da micela; os processos nas seções de drenagem e de carregamento. Na forma final, o modelo acoplado apresenta-se em termos de redes neurais artificiais, que possibilita operar com tempos discretos e contínuos, permitindo a simulação numérica deste extrator industrial, o treinamento favorável da rede, sua identificação, e o acompanhamento em tempo real. Foram determinadas características da matéria-prima através de um trabalho experimental em laboratório. Através dos resultados obteve-se a validação do modelo por meios teóricos e experimentais Os resultados teóricos foram comparados com os dados experimentais e com cálculos feitos através do método de estágios ideais. As simulações numéricas revelam propriedades do campo de extração para o regime transiente com distribuição uniforme e regime transiente industrial, onde verifica-se que o modelo descreve corretamente o comportamento real do campo de percolação do extrator. Também foram realizadas simulações numéricas com o objetivo de avaliar as principais características do extrator em função da sua geometria e características da matéria-prima, variando a altura e o número de vagões do extrator verificou-se que é possível simular o comportamento do extrator para diferentes formas e tipo de qualidades da matéria-prima. Foram feitas simulações utilizando um solvente alternativo(álcool) e mudando parâmetros do extrator, onde observou-se que o solvente exige alterações na dimensão do extrator.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabalho relata o desenvolvimento de uma aplicação capaz de reconhecer um vocabulário restrito de comandos de direcionamento pronunciados de forma isolada e independentes do locutor. Os métodos utilizados para efetivar o reconhecimento foram: técnicas clássicas de processamento de sinais e redes neurais artificiais. No processamento de sinais visou-se o pré-processamento das amostras para obtenção dos coeficientes cepstrais. Enquanto que para o treinamento e classificação foram utilizadas duas redes neurais distintas, as redes: Backpropagation e Fuzzy ARTMAP. Diversas amostras foram coletadas de diferentes usuários no sentido de compor um banco de dados flexível para o aprendizado das redes neurais, que garantisse uma representação satisfatória da grande variabilidade que apresentam as pronúncias entre as vozes dos usuários. Com a aplicação de tais técnicas, o reconhecimento demostrou-se eficaz, distinguindo cada um dos comandos com bons índices de acerto, uma vez que o sistema é independente do locutor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O presente trabalho implementa um método computacional semi-automático para obter medidas de estruturas cardíacas de fetos humanos através do processamento de imagens de ultra-som. Essas imagens são utilizadas na avaliação cardíaca pré-natal, permitindo que os médicos diagnostiquem problemas antes mesmo do nascimento. A dissertação é parte de um projeto desenvolvido no Instituto de Informática da Universidade Federal do Rio Grande do Sul, denominado SEGIME (Segmentação de Imagens Médicas). Neste projeto, está sendo desenvolvida uma ferramenta computacional para auxiliar na análise de exames ecocardiográficos fetais com o apoio da equipe de Cardiologia Fetal do Instituto de Cardiologia do Rio Grande do Sul. O processamento de cada imagem é realizado por etapas, divididas em: aquisição, pré-processamento, segmentação e obtenção das medidas. A aquisição das imagens é realizada por especialistas do Instituto de Cardiologia. No pré-processamento, é extraída a região de interesse para a obtenção das medidas e a imagem é filtrada para a extração do ruído característico das imagens de ultra-som. A segmentação das imagens é realizada através de redes neurais artificiais, sendo que a rede neural utilizada é conhecida como Mapa Auto-organizável de Kohonen. Ao final do processo de segmentação, a imagem está pronta para a obtenção das medidas. A técnica desenvolvida nesta dissertação para obtenção das medidas foi baseada nos exames realizados pelos especialistas na extração manual de medidas. Essa técnica consiste na análise da linha referente à estrutura de interesse onde serão detectadas as bordas. Para o início das medidas, é necessário que o usuário indique o ponto inicial sobre uma borda da estrutura. Depois de encontradas as bordas, através da análise da linha, a medida é definida pela soma dos pixels entre os dois pontos de bordas. Foram realizados testes com quatro estruturas cardíacas fetais: a espessura do septo interventricular, o diâmetro do ventrículo esquerdo, a excursão do septum primum para o interior do átrio esquerdo e o diâmetro do átrio esquerdo. Os resultados obtidos pelo método foram avaliados através da comparação com resultados de referência obtidos por especialistas. Nessa avaliação observou-se que a variação foi regular e dentro dos limites aceitáveis, normalmente obtida como variação entre especialistas. Desta forma, um médico não especializado em cardiologia fetal poderia usar esses resultados em um diagnóstico preliminar.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A capacidade de encontrar e aprender as melhores trajetórias que levam a um determinado objetivo proposto num ambiente e uma característica comum a maioria dos organismos que se movimentam. Dentre outras, essa e uma das capacidades que têm sido bastante estudadas nas ultimas décadas. Uma consequência direta deste estudo e a sua aplicação em sistemas artificiais capazes de se movimentar de maneira inteligente nos mais variados tipos de ambientes. Neste trabalho, realizamos uma abordagem múltipla do problema, onde procuramos estabelecer nexos entre modelos fisiológicos, baseados no conhecimento biológico disponível, e modelos de âmbito mais prático, como aqueles existentes na área da ciência da computação, mais especificamente da robótica. Os modelos estudados foram o aprendizado biológico baseado em células de posição e o método das funções potencias para planejamento de trajetórias. O objetivo nosso era unificar as duas idéias num formalismo de redes neurais. O processo de aprendizado de trajetórias pode ser simplificado e equacionado em um modelo matemático que pode ser utilizado no projeto de sistemas de navegação autônomos. Analisando o modelo de Blum e Abbott para navegação com células de posição, mostramos que o problema pode ser formulado como uma problema de aprendizado não-supervisionado onde a estatística de movimentação no meio passa ser o ingrediente principal. Demonstramos também que a probabilidade de ocupação de um determinado ponto no ambiente pode ser visto como um potencial que tem a propriedade de não apresentar mínimos locais, o que o torna equivalente ao potencial usado em técnicas de robótica como a das funções potencias. Formas de otimização do aprendizado no contexto deste modelo foram investigadas. No âmbito do armazenamento de múltiplos mapas de navegação, mostramos que e possível projetar uma rede neural capaz de armazenar e recuperar mapas navegacionais para diferentes ambientes usando o fato que um mapa de navegação pode ser descrito como o gradiente de uma função harmônica. A grande vantagem desta abordagem e que, apesar do baixo número de sinapses, o desempenho da rede e muito bom. Finalmente, estudamos a forma de um potencial que minimiza o tempo necessário para alcançar um objetivo proposto no ambiente. Para isso propomos o problema de navegação de um robô como sendo uma partícula difundindo em uma superfície potencial com um único ponto de mínimo. O nível de erro deste sistema pode ser modelado como uma temperatura. Os resultados mostram que superfície potencial tem uma estrutura ramificada.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neste trabalho é dado ênfase à inclusão das incertezas na avaliação do comportamento estrutural, objetivando uma melhor representação das características do sistema e uma quantificação do significado destas incertezas no projeto. São feitas comparações entre as técnicas clássicas existentes de análise de confiabilidade, tais como FORM, Simulação Direta Monte Carlo (MC) e Simulação Monte Carlo com Amostragem por Importância Adaptativa (MCIS), e os métodos aproximados da Superfície de Resposta( RS) e de Redes Neurais Artificiais(ANN). Quando possível, as comparações são feitas salientando- se as vantagens e inconvenientes do uso de uma ou de outra técnica em problemas com complexidades crescentes. São analisadas desde formulações com funções de estado limite explícitas até formulações implícitas com variabilidade espacial de carregamento e propriedades dos materiais, incluindo campos estocásticos. É tratado, em especial, o problema da análise da confiabilidade de estruturas de concreto armado incluindo o efeito da variabilidade espacial de suas propriedades. Para tanto é proposto um modelo de elementos finitos para a representação do concreto armado que incorpora as principais características observadas neste material. Também foi desenvolvido um modelo para a geração de campos estocásticos multidimensionais não Gaussianos para as propriedades do material e que é independente da malha de elementos finitos, assim como implementadas técnicas para aceleração das avaliações estruturais presentes em qualquer das técnicas empregadas. Para o tratamento da confiabilidade através da técnica da Superfície de Resposta, o algoritmo desenvolvido por Rajashekhar et al(1993) foi implementado. Já para o tratamento através de Redes Neurais Artificias, foram desenvolvidos alguns códigos para a simulação de redes percéptron multicamada e redes com função de base radial e então implementados no algoritmo de avaliação de confiabilidade desenvolvido por Shao et al(1997). Em geral, observou-se que as técnicas de simulação tem desempenho bastante baixo em problemas mais complexos, sobressaindo-se a técnica de primeira ordem FORM e as técnicas aproximadas da Superfície de Resposta e de Redes Neurais Artificiais, embora com precisão prejudicada devido às aproximações presentes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

São apresentados os resultados do desenvolvimento das comunidades de algas perifíticas sobre substratos artificiais em duas lagoas de estabilização na Estação de Tratamento de Esgotos (ETE) do Lami, em Porto Alegre, Rio Grande do Sul, Brasil. Foram analisadas as mudanças na diversidade de espécies durante 8 semanas, entre outubro e dezembro de 2001, em três profundidades na coluna d'água, utilizando-se vários índices. O grupo de algas predominante no substrato superor nas duas lagoas foi o das diatomáceas, enquanto que nas profundidades média e inferior as cianobactérias foram as espécies mais freqüentes e abundantes, tanto na lagoa facultativa 1 como na lagoa de maturação 2 . Pelos resultados obtidos é possível que o substrato artificial de telas plástica utilizado neste experimento seja eficiente na remoção de nutrientes, tais como fósforo e nitrogênio. Pelo Índice Autotrófico verifica-se que as lagoas de estabilização são ambientes autotróficos, principalmente nos estratos superior e médio. Métodos estatísticos de análise multivariada foram realizados para descrever as relações entre espécies algais no tempo e em diferentes profundidades, bem como para encontrar afinidades específicas. Os resultados indicam espécies e grupos dominantes, substituições de espécies, mudanças na densidade e diversidade específica das comunidades perifíticas nessas lagoas. Este estudo demonstrou que o tempo para o estabelecimento de comunidades do perifiton diminui com a profundidade. Na análise das algas perifíticas foram registradas 32 táxons distribuídos em 4 divisões.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabalho tem como objetivo explicar o funcionamento do Sistema Brasileiro de Defesa da Concorrência e apresentar novas ferramentas de auxílio à política antitruste. Para isso, discutiremos o Sistema Norte-Americano de Defesa da Concorrência e, principalmente, o guideline americano, que é a base das técnicas de análise de fusões e aquisições em grande parte dos países, inclusive o Brasil. Uma vez apresentado o ambiente institucional, explicare- mos alguns modelos de simulação de fusões, uma técnica relativamente recente utilizada por alguns órgãos antitruste do mundo que permite fazer previsões do novo nível de preços da indústria após a fusão. Para ilustrar as virtudes do método, aplicaremos o modelo a alguns casos de aquisições conhecidos no Brasil e analisaremos seus resultados.