980 resultados para urban dynamic
Resumo:
For a multiarmed bandit problem with exponential discounting the optimal allocation rule is defined by a dynamic allocation index defined for each arm on its space. The index for an arm is equal to the expected immediate reward from the arm, with an upward adjustment reflecting any uncertainty about the prospects of obtaining rewards from the arm, and the possibilities of resolving those uncertainties by selecting that arm. Thus the learning component of the index is defined to be the difference between the index and the expected immediate reward. For two arms with the same expected immediate reward the learning component should be larger for the arm for which the reward rate is more uncertain. This is shown to be true for arms based on independent samples from a fixed distribution with an unknown parameter in the cases of Bernoulli and normal distributions, and similar results are obtained in other cases.
Resumo:
During the past few decades, developing efficient methods to solve dynamic facility layout problems has been focused on significantly by practitioners and researchers. More specifically meta-heuristic algorithms, especially genetic algorithm, have been proven to be increasingly helpful to generate sub-optimal solutions for large-scale dynamic facility layout problems. Nevertheless, the uncertainty of the manufacturing factors in addition to the scale of the layout problem calls for a mixed genetic algorithm–robust approach that could provide a single unlimited layout design. The present research aims to devise a customized permutation-based robust genetic algorithm in dynamic manufacturing environments that is expected to be generating a unique robust layout for all the manufacturing periods. The numerical outcomes of the proposed robust genetic algorithm indicate significant cost improvements compared to the conventional genetic algorithm methods and a selective number of other heuristic and meta-heuristic techniques.
Resumo:
This thesis evaluates a chronic condition self-management program for Aboriginal and Torres Strait Islander people in urban south-east Queensland who have or are at risk of cardiovascular disease. Outcomes showed short-term improvements for some anthropometry measures which could be a trend for improvement in other anthropometry indicators over the longer term. The program was of particular benefit for participants who had several social and emotional wellbeing conditions. The use of an Aboriginal and Torres Strait Islander conceptual framework was critical in undertaking culturally competent quantitative research in this project.
Resumo:
A new method of modeling material behavior which accounts for the dynamic metallurgical processes occurring during hot deformation is presented. The approach in this method is to consider the workpiece as a dissipator of power in the total processing system and to evaluate the dissipated power co-contentJ = ∫o σ ε ⋅dσ from the constitutive equation relating the strain rate (ε) to the flow stress (σ). The optimum processing conditions of temperature and strain rate are those corresponding to the maximum or peak inJ. It is shown thatJ is related to the strain-rate sensitivity (m) of the material and reaches a maximum value(J max) whenm = 1. The efficiency of the power dissipation(J/J max) through metallurgical processes is shown to be an index of the dynamic behavior of the material and is useful in obtaining a unique combination of temperature and strain rate for processing and also in delineating the regions of internal fracture. In this method of modeling, noa priori knowledge or evaluation of the atomistic mechanisms is required, and the method is effective even when more than one dissipation process occurs, which is particularly advantageous in the hot processing of commercial alloys having complex microstructures. This method has been applied to modeling of the behavior of Ti-6242 during hot forging. The behavior of α+ β andβ preform microstructures has been exam-ined, and the results show that the optimum condition for hot forging of these preforms is obtained at 927 °C (1200 K) and a strain rate of 1CT•3 s•1. Variations in the efficiency of dissipation with temperature and strain rate are correlated with the dynamic microstructural changes occurring in the material.
Resumo:
Following decades of neglect and decline, many US cities have undergone a dramatic renaissance. From New York to Nashville and Pittsburgh to Portland governments have implemented innovative redevelopment strategies to adapt to a globally integrated, post-industrial economy and cope with declining industries, tax bases, and populations - but the urban comeback has been highly uneven. Urban Revitalization integrates academic and policy research with professional knowledge and techniques. Written in an accessible style and with a thoughtful structure, it will provide graduate and upper-level undergraduate students with a comprehensive resource while also serving as a reference for professionals.