979 resultados para uptake mechanisms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper will analyse two of the likely damage mechanisms present in a paper fibre matrix when placed under controlled stress conditions: fibre/fibre bond failure and fibre failure. The failure process associated with each damage mechanism will be presented in detail focusing on the change in mechanical and acoustic properties of the surrounding fibre structure before and after failure. To present this complex process mathematically, geometrically simple fibre arrangements will be chosen based on certain assumptions regarding the structure and strength of paper, to model the damage mechanisms. The fibre structures are then formulated in terms of a hybrid vibro-acoustic model based on a coupled mass/spring system and the pressure wave equation. The model will be presented in detail in the paper. The simulation of the simple fibre structures serves two purposes; it highlights the physical and acoustic differences of each damage mechanism before and after failure, and also shows the differences in the two damage mechanisms when compared with one another. The results of the simulations are given in the form of pressure wave contours, time-frequency graphs and the Continuous Wavelet Transform (CWT) diagrams. The analysis of the results leads to criteria by which the two damage mechanisms can be identified. Using these criteria it was possible to verify the results of the simulations against experimental acoustic data. The models developed in this study are of specific practical interest in the paper-making industry, where acoustic sensors may be used to monitor continuous paper production. The same techniques may be adopted more generally to correlate acoustic signals to damage mechanisms in other fibre-based structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High current density induced damages such as electromigration in the on-chip interconnection /metallization of Al or Cu has been the subject of intense study over the last 40 years. Recently, because of the increasing trend of miniaturization of the electronic packaging that encloses the chip, electromigration as well as other high current density induced damages are becoming a growing concern for off-chip interconnection where low melting point solder joints are commonly used. Before long, a huge number of publications have been explored on the electromigration issue of solder joints. However, a wide spectrum of findings might confuse electronic companies/designers. Thus, a review of the high current induced damages in solder joints is timely right this moment. We have selected 6 major phenomena to review in this paper. They are (i) electromigration (mass transfer due electron bombardment), (ii) thermomigration (mass transfer due to thermal gradient), (iii) enhanced intermetallic compound growth, (iv) enhanced current crowding, (v) enhanced under bump metallisation dissolution and (vi) high Joule heating and (vii) solder melting. the damage mechanisms under high current stressing in the tiny solder joint, mentioned in the review article, are significant roadblocks to further miniaturization of electronics. Without through understanding of these failure mechanisms by experiments coupled with mathematical modeling work, further miniaturization in electronics will be jeopardized

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The possible failure mechanisms of anisotropic conductive film (ACF) joints under isothermal ageing conditions have been identified through experiments. It has been found that ACF joints formed at higher bonding temperatures can prevent increases in the contact resistance for any ageing temperature. The higher the ageing temperature the higher the electrical failure rate is. The formation of conduction gaps between the conductive particles and the pads and damages to the metal coatings of the particle have been identified as the reasons behind the electrical failures during ageing. In order to understand the mechanism for the formation of the conduction gap and damages in metal coatings during the isothermal ageing, computer modelling has been carried out and the results are discussed extensively. The computer analysis shows that stresses concentrate at the edges of the particle–pad interface, where the adhesive matrix meets the particle. This could lead to subsequent damages and reductions in the adhesion strength in that region and it is possible for the conductive particle to be detached from the pad and the adhesive matrix. It is believed that because of this a conduction gap appears. Furthermore, under thermal loading the thermal expansion of the adhesive matrix squeezes the conductive particle and damages the metal coatings. Experimental evidences support this computational finding. It is, therefore, postulated that if an ACF-based electronic component operates in a high temperature aging condition, its electrical and mechanical functionalities will be at risk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The water sorption and desorption behaviour of three commercial glass-ionomer cements used in clinical dentistry have been studied in detail. Cured specimens of each material were found to show slight but variable water uptake in high humidity conditions, but steady loss in desiccating ones. This water loss was found to follow Fick's law for the first 4-5 h. Diffusion coefficients at 22 degrees C were: Chemflex 1.34 x 10(-6) cm(2) s(-1), Fuji IX 5.87 x 10(-7) cm(2) s(-1), Aquacem 3.08 x 10(-6) cm(2) s(-1). At 7 degrees C they were: Chemflex 8.90 x 10(-7) cm(2) s(-1), Fuji IX 5.04 x 10(-7) cm(2) s(-1), Aquacem 2.88 x 10(-6) cm(2) s(-1). Activation energies for water loss were determined from the Arrhenius equation and were found to be Chemflex 161.8 J mol(-1), Fuji IX 101.3 J mol(-1), Aquacem 47.1 J mol(-1). Such low values show that water transport requires less energy in these cements than in resin-modified glass-ionomers. Fick's law plots were found not to pass through the origin. This implies that, in each case, there is a small water loss that does not involve diffusion. This was concluded to be water at the surface of the specimens, and was termed "superficial water". As such, it represents a fraction of the previously identified unbound (loose) water. Superficial water levels were: Chemflex 0.56%, Fuji IX 0.23%, Aquacem 0.87%. Equilibrium mass loss values were shown to be unaffected by temperature, and allowed ratios of bound:unbound water to be determined for all three cements. These showed wide variation, ranging from 1:5.26 for Chemflex to 1:1.25 for Fuji IX.