979 resultados para two strikes rule
Mortality from Cardiovascular Diseases in the Elderly: Comparative Analysis of Two Five-year Periods
Resumo:
Background:Cardiovascular diseases are the leading cause of death in Brazil. The better understanding of the spatial and temporal distribution of mortality from cardiovascular diseases in the Brazilian elderly population is essential to support more appropriate health actions for each region of the country.Objective:To describe and to compare geospatially the rates of mortality from cardiovascular disease in elderly individuals living in Brazil by gender in two 5-year periods: 1996 to 2000 and 2006 to 2010.Methods:This is an ecological study, for which rates of mortality were obtained from DATASUS and the population rates from the Brazilian Institute of Geography and Statistics (Instituto Brasileiro de Geografia e Estatística). An average mortality rate for cardiovascular disease in elderly by gender was calculated for each period. The spatial autocorrelation was evaluated by TerraView 4.2.0 through global Moran index and the formation of clusters by the index of local Moran-LISA.Results:There was an increase, in the second 5-year period, in the mortality rates in the Northeast and North regions, parallel to a decrease in the South, South-East and Midwest regions. Moreover, there was the formation of clusters with high mortality rates in the second period in Roraima among females, and in Ceará, Pernambuco and Roraima among males.Conclusion:The increase in mortality rates in the North and Northeast regions is probably related to the changing profile of mortality and improvement in the quality of information, a result of the increase in surveillance and health care measures in these regions.
Resumo:
Magdeburg, Univ., Fak. für Naturwiss., Diss., 2010
Resumo:
Material: Studies were made mainly with Ascaris megalocephála Cloq. univalens and bivalens, and also with Tityus bahiensis Perty. 1) Somatic pairing of heterochromatic regions. The heterochromatic ends of the somatic chromosomes in Ascaris show a very strong tendency for unspecifical somatic pairing which may occur between parts of different chromosomes (Figs. 1, 2, 3, 7, 10, 11, 12, 13, 14, 16, 18,), between the two ends of the same chromosome either directly (Figs. 4, 5, 7, 8, 11, 12, 13, 15, 16, 17, 18) or inversely (Fig. 8, in the arrow) and also within a same chromosomal arm (Fig. 6). 2) During the early first cleavage division the chomosomes are an isodiametric cylinder (Figs. 6, 9, 11, 13, 14). But in later metaphase the ends become club shaped (Figs. 1, 2, 3, 4, 5, 7, 10) which is interpreted as the beginning of migration of chromatic substance from the central euchromatic region towards the heterochromatic regions. This migration becomes more and accentuated in anaphase (Figs. 19, 22, 23) and in the vegetative cells where euchromatic region looses more and more staing power, especially in the intersititial zones between the individual small spherical chromosomes into which the euchromatic region desintegrates. The emigrated chromatin material is finally eliminated with the heterochromatic chromosome ends (Fig. 23 and 24). 3) It seems a general rule that during mitotic anaphase all chromosomes with diffuse or multiple spindle fiber attachement (Ascaris, Tityus, Luzula, Steatococcus, Homoptera and Heteroptera in general) move to the poles in the form of an U with precedence of the chromosomal ends. In Ascaris, the heterocromatic regions are pulled passively towards the poles and only the euchromatic central portion may be U-shaped (Fig. 19, 22, 25). While in the other species this U-shape is perfect since the beginning of anaphase, giving the impression that movement towards the poles begins at both ends of a chromosome simultaneously, this is not the case in Ascaris. There the euchromatic region is at first U-shaped, passing then to form a straight or zig-zag line and becoming again U-shaped during late anaphase. This is explained by the fact that the ends of the euchromatic regions have to pull the weight of the passive heterochromatic portions. 4) While it is generally accepted that, during first meio-tic division untill second anaphase, all attachement regions remain either undivided or at least united closely, this is not the case in chromosomes with diffused or multiple attachment. Here one clearly sees in all cases so far studied four parallel chromatids at first metaphase. In Luzula and Tityus (for Tityus all figs. 26 to 31) this division is allready quite clear in paraphase (pro-metaphase) and it cannot be said wether in other species the division in sister chromatids is allready present, but not visible at this stage. During first anaphase the sister chromatids of Titbits remain more or less in contact, while in Luzula and especially in Ascaris they are quite separated. Thus one can count in late anaphase or telophase of Ascaris megalocephala bivalens, nearly allways, four separate chromosomes near each pole, or a total of eight chromatids per division figure (Figs. 35, 36, 37, 38, 39, 40, 41).